ETT-311 SIGEk Solutions Manual
 [for Instructor’s use only]

Signals f Systems Experiments with Emona SIGEx Volume 1

Signals \& Systems Experiments with Emona SIGEx

Instructors Solutions Manual

Volume S1 - Fundamentals of Signals \& Systems

Authors: Robert Radzyner PhD
Carlo Manfredini B.E., B.F.A.
Editor: Carlo Manfredini

Issue Number: 1.1

Published by:
Emona Instruments Pty Ltd, 78 Parramatta Road
Camperdown NSW 2050
AUSTRALIA.

```
web: www.emona-tims.com
telephone: +61-2-9519-3933
fax: +61-2-9550-1378
```

Copyright © 2011 Emona TIMS Pty Ltd and its related entities. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, including any network or Web distribution or broadcast for distance learning, or stored in any database or in any network retrieval system, without the prior written consent of Emona Instruments Pty Ltd.

For licensing information, please contact Emona TIMS Pty Ltd.
NI, NI ELVIS II/+, NI LabVIEW are registered trademarks of National instruments Corp.

The TIMS logot Emona TIMS Pty Ltd

Printed in Australia

Note to Instructors

The EMONA SIGEx Lab Manual contains 3 types of questions.
(i) Pre-Lab preparation questions, which review the theoretical principles a student may need, to get the most out of each experiment.
(ii) Experiment questions, in response to findings within the experiment itself, as the student carries-out the experiment.
(iii) Tutorial questions, which are suggested optional questions to further reinforce the theoretical principles covered in the experiment.

This manual is provided as a convenient guide, for instructor's use only. It offers suggested answers to the various questions posed in the SIGEx Lab Manual. Due to intentional gain and phase variations between different SIGEx boards, it should be understood that each student's responses, as measured, may differ by more than $+/-10 \%$ with respect to the answers presented in this manual.
Instructors may also prefer to formulate their own answers to theoretical questions, and these may differ from those presented in this manual.
The SIGEx Lab Manual and Instructors Manual is not a replacement for a textbook. It is primarily aimed at guiding students to implement their learnings from formal lectures, in a hands-on, experiential manner.

Students will almost certainly learn more from their mistakes and misapprehensions, than they will from completing the experiments without incident. Taking time to sort out unexpected results will be of great benefit to their learning process.

The SIGEx board is not calibrated. In fact, it is considered a virtue of the hands-ons modelling approach that circuit responses between boards may differ slightly. This will result in slightly different responses from the various circuit blocks. Adjacent students will therefore need to pay attention to their own measurements rather than copying the results of others.

Answers to theTutorial questions are not provided, as these questions are suggested as optional work, if time permits. It is left up to the individual instructors to provide guidance in lectures about these questions.

We hope that your students enjoy working with the EMONA SIGEx board and welcome your comments via email at any time.

Best regards,
Carlo Manfredini
EMONA TIMS

EMONA SIGEx Instructors Lab Manual Volume 1

 For Instructors use only
Contents

Special signals - characteristics and applications S1-03
Systems: Linear and non-linear S1-04
Unraveling convolution S1-05
Integration, correlation \& matched filters S1-06
Exploring complex numbers and exponentials S1-07
Build a Fourier series analyzer S1-08
Spectrum analysis of various signal types S1-09
Time domain analysis of an RC circuit S1-10
Poles and zeros in the Laplace domain S1-11
Sampling and Aliasing S1-12
Getting started with analog-digital conversion S1-13
Discrete-time filters with FIR systems S1-14
Poles and zeros in the z plane with IIR systems S1-15
Discrete-time filters - practical applications S1-16

Name:
Class:

Experiment 3-Special signals - characteristics and applications

Question 1

What is the minimum interval of the SEQUENCE GENERATOR data?

1 ms
\qquad
Question 2
Describe the signal transitions for both outputs:

BBLPF, has some overshoot then settles, whereas the TLPF has several cycles of overshoot
before settling.

Table 1: transition times for sequence data

Range (\%)	BLPF@1 (us)	TLPF@1 (us)		BLPF@1.5kHz (us)	TLPF@1.5kHz (us)
$10-90$ rising	220	70	220	75	
$10-90$ falling	220	70	220	75	
$1-99$ rising	360	114	350	114	
$1-99$ falling	360	114	114		

Question 3

Describe the signal transitions for both outputs:

Above 3500 Hz the BLPF signal no longer transitions completely between states for 0-1
patterns. The channel places a limit on the transition rate.

Table 2: transition times for step input

Range (\%)	BLPF (us)		TLPF (us)	RCLP (us)
$10-90$ rising	210	70	2120	
$10-90$ falling	210	70	2120	

Graph 1: step response waveforms

Question 4

Describe what happens when you reach 10% and 5% duty cycle?

The amplitude of the BLPF output begins to reduce.
The TLPF output begins to stop ringing and have no "flat top" at all.

Table 3: pulse response readings

BLPF		TLPF	RCLPF
Duty cycle "demarcation" value	0.1	0.04	-
Calculated pulse width (us)	400	160	~ 3000
\% of step response	200	200	150
Period of oscillations (us)	480	140	-

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Table 4: amplitude vs frequency readings

Frequency (Hz)		BLPF (VPp)	
	TLPF(VPp)		RCLPF(vpp)
100	3.45	3.4	3.4
500	3.45	3.4	1.3
1000	3.26	3.4	0.68
1500	2.85	3.4	0.48
2000	2.05	3.36	0.35
4000	0.16	2.9	0.2
6000	0.1	3.14	0.13
8000	<0.1	1.72	<0.13
10000	<0.1	<0.1	<0.13

Question 5

What frequency would a matching sinewave have?

Its period would be twice the step response time ie: BBLPF=420us:2380 Hz.

TLPF=140us:7142Hz. RCLPF=4000us:250Hz

Question 6

Describe what happens to the frequency response plotted on the SFP at this frequency?

The response starts to drop off at that frequency, down to approx. 0.7 times initial value

Question 7

What was the mechanism described earlier?

The incoming signal doesn't have enough time to transition between levels before changing direction, because the SUI's "inertia" (resistance to change) is slowing it down.

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 3: CLIPPER input and output readings
Next we use the CLIPPER as a primitive digital detector.

Question 8

How does this setup compare to the previous findings without a LIMITER?

The LIMITER enables the recovery of signals at a much higher rate then without.

Experiment 4 - Systems - Linear \& Nonlinear

Question 1

Write down a formula to express the square of a sinusoid in terms of a double angle argument. $[A \sin (w t)]^{2}=\frac{1}{2} A-\frac{1}{2} \cdot A \cos (2 w t)$

Question 2

What is the meaning of differential linearity?
A constant relation between the change in the output and input.

Question 3

How would you apply these formulas in testing systems for linearity in this Lab? How many replicas of the system are needed for the additivity test?

Implement the formulas with models using a module as a S.U.I
At least 2, but 3 for simulataneous testing.
Table 1

Input amplitude (Vpp)	LIMITER amplitude (Vpp)	RECTIFIER amplitude (Vpp)
1	3.2	0.42
2	3.2	1.28
3	3.2	2.2
4	3.2	3.2
5	3.2	4.1
6	3.2	5.0
7	3.2	6.0
10	3.2	9

Question 4

Does this system (CLIPPER) satisfy the scaling test for linearity? Show your reasoning.

No. The output does not follow the input proportionally.

Question 5

Does this system (RECTIFIER) satisfy the scaling test for linearity? Show your reasoning.

Yes. It does follow the input amplitude proportionally, for voltages above 4Vpp

Table 2

Input amplitude (Vpp)	MULTIPLIER amplitude (Vpp)
1	0.29
2	1.1
3	2.5
4	4.37
5	6.88
6	9.8

Question 6

Does this system (MULTIPLIER) satisfy the scaling test for linearity? Show your reasoning.

No. The output does not follow the input proportionally.

Squaring is a quadratic relation.

Table 3

Input DC voltage (V)	VCO output frequency (Hz)
-3	869
-2	1235
-1	1610
0	1970
1	2320
2	2700
3	3210

Question 7

Is the VCO a linear system? Explain your reasoning.

Freq change varies proportionally with input voltage change

Question 8

What applications could the VCO with varying output frequency be used for?

The input could be a message which varies an VCO output RF freq for transmission ie FM
\qquad

Question 9

What is the formula for the INTEGRATOR output?
\qquad
$\mathrm{K}=10 \mathrm{~V} / 0.5 \mathrm{~ms} / 1.6 \mathrm{~V}=12,500 / \mathrm{s}$

Question 10

What are the formulae for the other INTEGRATOR rate settings?

Out $(t)=$ k.INTEG $(+-D C d t)$
INTEG DIPS = DW:DW saturates...rate too high for this frequency

Question 11

Use the value of the b2 gain, and INTEGRATOR constant you measured above to determine the time constant of the exponential responses. Compare this with the value obtained from your measurement.
$B 2=-1, k=12,500$

Time constant $=1 / 12,500=80$ us

Question 12

Write a differential equation for this first-order feedback system. Assume initial conditions are zero. Show that with a sinusoidal function of time as input, the output is also sinusoidal. Show that this also happens when the input is a complex exponential. Which special property of complex exponential functions provides the key?
$y^{\prime}(t)-b 2 y(t)=u(t)$; where $b 2=-1$

Graph 1: additivity signals

Question 13

Does the outcome indicate that the linearity conditions have been met for these two test inputs?

Yes

Question 14

Does the outcome during variation indicate that the linearity conditions are still maintained for these two test inputs?

Yes

Input frequency (Hz)	Square wave output (V)	Sine wave output (V)
100	1.73 V pk	1.78 V pk
300	1.73	1.78
600	1.82 average	1.78
900	1.94	1.64
1200	1.94	1.55
1500	1.82	1.42
1800	1.55	1.2
2100	1.17	0.92
2400	0.79	0.63
2700	0.5	0.41

Question 15
How are you able to use the square wave for this test?
No. The output has ripple which varies with frequency.

Experiment 5 - Unraveling Convolution

Question 1

Describe a procedure for confirming the GAIN at each tap?

Remove leads to the B ADDERs leaving only 1 of 3 attached and view the output pulse height.

Question 2

Display the delay line input signal (i.e. at the first z^{-1} block input) and the ADDER output signal. Measure and record the amplitude of each pulse in the output sequence.

1 V in, 0.3 , followed by 0.5 , followed by -0.2 V pulses.

Graph 1: unit pulse pair summation

Question 3

What is meant by "superposition". Discuss how this exercise above relates to superposition and the "additivity" principle.

Treating parts of an input individually, and taking the sum of the outputs of the parts as the output of the whole, as per the additivity principle.

Question 4
What do you expect to see if this exercise were expanded to two or more contiguous pulses? Explain.

A longer output pulse.

Question 5

Note the amplitude of the half wave rectified sine and explain why its amplitude is reduced relative to the input?

The RECTIFIER is a real circuit, not an "ideal" device, and hence has a forward voltage drop
Of approx 0.5 V

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 2: inputs and sampled outputs

Question 6

How does this process relate to the principle of "superposition"?

Question 7

Write down the formula for $y(2)$ and $y(1)$? Discuss any unexpected differences .
$y(1)=b_{0} \cdot x(1)+b_{1} \cdot x(0)+b_{2} \cdot x(-1)$
$y(2)=b_{0} \cdot x(2)+b_{1} \cdot x(1)+b_{2} \cdot x(0)$

Question 8

Explain why this term is reversed and what does this mean?

It represents time reversal, and equates to the values being processed in reverse order.

Question 9

What is a common label for this response?

3-point moving average (MAV)

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 3: sinewave input signals

Question 10

Show that the formula remains valid.

Question 11

Show your working for the sum of squares analysis?

8 samples are : $-0.8,-1.3,-1.0,-0.1,+0.8,+1.3,+1.0,+0.1$. Pairs are $[-0.8,-1],[-1.3,-0.1],[-1,0.8]$
[-0.1,1.3], $[0.8,1],[1.3,0.1] . S S$ of pairs within 4% of each other

Question 12

Why is the outcome obtained above described as filtering?

The system passes frequencies selectively, hence it "filters" some and not others.

Experiment 6 - Integration, convolution, correlation and matched filters

Pre-requisite work

Question 1

For both a maximal length PRBS, of 31 and 63 bit length, calculate the ACF function values for all possible positions.

ACF of m-sequence of period $N=N$ for $k=0 ;-1$ for $1<=k<=N-1$
Where $\mathrm{k}=$ delay index. Use $\mathrm{N}=31 \& 63$.

Question 2

Calculate the sequence from a 5 bit LFSR using feedback taps 5 \& 3 .

This is the same as for SG UP:UP sequence
[1111100011011101010000100101100]

Question 3

(a) For the set up in Fig11, write down an expression for $x(t)$ in terms of the input $y(t)$ and the S.U.I. impulse response $h(t)$.

Convolution $y^{\star} h$
(b) Write down an expression for the CCF of x and y, and substitute the expression for x from (a).
(c) Demonstrate that the result in (b) can be reduced to the convolution of $h(t)$ and the ACF of the input.
(d) Show that if the ACF of y is an impulse function, the output of the crosscorrelator gives $h(t)$ (with a scaling factor).
(e) Demonstrate that if the input is white noise the ACF is an impulse

Question 4

(a) In the term "matched filter" what are the items that are matched?
the impulse response of the MF is matched to the pulseform of the

data symbol at its input

(b) What is the role of the MF in a digital communication receiver?
probability of error.
(c) describe the operation of the "integrate \& dump" process in a digital communication receiver
(d) explain why the I\&D receiver is effectively a filter with a square pulse as its impulse response
(e) extend (d) to explain why the I\&D receiver is the matched filter for square pulseform data sequences in additive white noise

Question 5

What voltage is the output of the MULTIPLIER ? Explain why this is so
4 V .
$+2 V *+2 V=4 V$, or $-2 *-2=4 V$

Question 6

What voltage would the ramp have reached if it had not saturated?
Rate $=10.5 / 4 \mathrm{~ms}=2625 \mathrm{~V} / \mathrm{s}$, so for a period of 10 ms
$2625 * 10 \mathrm{~ms}=2625 * 0.01=26.25 \mathrm{~V}$

Question 7
What voltage is at the I \& H output?
-0.75 V

Graph 1: Plot of I \& H voltages vs. delay position n

Question 8

How well do these results correspond with your theoretical expectations from the pre-lab preparation work?

Question 9

How well do these results correspond with your theoretical expectations?
Similar relationships.

Question 10

Based on your measured ACF, what can you say about this sequence?
$26 \mathrm{~V}: 4.1 \mathrm{~V} ;-2.5 \mathrm{~V} ;-2.5 \mathrm{~V}$. This sequence is not maximal length
It probably includes repetition. Will not have a uniform spectrum.

Question 11

What observations can you make about this signal from its ACF ?
Alignment occurs at $n=18 . A C F$ as for a maximal length sequence.

Question 12

What observations can you make from this cross-correlation about the nature of the two sequences?

Not correlated at all. Very different sequences.

Question 13

Write down the 31-bit pattern for both PRBS sequences here. Note also the number of bit pattern "runs" ? Why is the pattern "00000" not present?

SG-PRBS:[1111100011011101010000100101100]
ALT-PRBS: [1111100110100100001010111011000]
4 runs of $0 \& 1 ; 2$ runs of $00 \& 11 ; 1$ run of $000 \& 111 ; 0$ runs of 1111; 1 run of 0000 ;
1 run of 11111; 0 runs of 0000 as 0000 is illegal. 0000 would cause the LFSR to stop.

Graph 2: using exponential pulses

Question 14

How could you describe this function?
A "delta function", as it is prominent only at one point

Question 15

Is the bandwidth of the proposed input for this exercise adequate for this application?
Pulse rate $=3.3 \mathrm{kHz}$. Time constant of RC NETWORK impulse response is around 1 ms , so 3 dB
Bandwidth of SUI $(R C)=1000 \mathrm{rad} / \mathrm{sec}=160 \mathrm{~Hz}$. Hence $3300 / 160=$ approx. $20=$ adequate .

Graph 3: in/out correlation plots

Question 16

Describe the output waveform from the correlator for the RC NETWORK SUI?

Resembles the impulse response of an RC NETWORK.

Question 17

Describe the output waveform from the correlator for the TUNEABLE LPF?
Resembles the impulse response of the TUNEABLE LPF, including the ringing.

Question 18

How many errors do you estimate are occurring in the recovered data signal after the filter?

Zero. The final point of the integration is well clear of the decision boundary at OV.

Statistically, there may be errors however we are not covering that issue here.

Question 19

How do you determine when errors are occurring? At what signal levels did this occur ?
Visually, ifthe end point ofthe integration, at the decision instant only, has crossed over the OV threshold.Temporary excursions do not cause errors eg near 3 ms in Figure 17

When signal gain $=0.1$, and noise gain $=2(\max)$, it is possible to see occasional crossovers.

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 4: integrate \& dump filtering

References

Lynn.P.A, "An introduction to the analysis and processing of signals"; Macmillan

Langton.C, "Linear Time Invariant (LTI) Systems and Matched Filter", www.complextoreal.com
G.R. Cooper and C.D. McGillem (Purdue), "Probabilistic methods of Signal and System Analysis", Holt Rinehart and Winston 2nd Ed 1986

Pre-lab preparation

Question 1

Confirm your understanding of the algebra associated with complex number by solving these equations using the binomial method:
a) $(3+i 2)+(5-i 6)$
b) $(3+i 2) \times(5-i 6)$
c) $(3+i 2)-(5-i 6)$
d) $(a+i b)+(c+i d)$
e) $(a+i b) \times(c+i d)$
f) $(a+i b) \times(a-i b)$

8 - i4; $27-i 8 ;-2+i 8 ;$

$$
(a+c)+i(b+d) ;(a c-b d)+i(b c+a d) ; a^{2}+b^{2}
$$

Question 2

Confirm your understanding of the algebra associated with complex number by solving these equations using vectors. Sketch your working on the graph below:
a) $(3+i 2)+(5-i 6)$
b) $(3+i 2) \times(5-i 6)$
c) $(3+i 2)-(5-i 6)$
d) $(a+i b)+(c+i d)$
e) $(a+i b) \times(c+i d)$
f) $(a+i b) \times(a-i b)$
a) $(3+i 2)==3.6 / / 33$ degrees
f) $(a+i b) \times(a-i b)=$ conjugates $=a^{2}+b^{2} / / 0$ degree

Question 3

Write the equation for signals at DAC-1 and DAC-0 as a function of time in the form: $A \cdot \cos (w t+\theta)$. Think of the centre of the scope timeline as the instant $t=0$.
$D A C-1=1 . \cos (w t+0)$
DAC-0 $=1 . \cos (w t-(2 \pi .90 / 360)) ; 2 \pi .90 / 360$ is 90 degrees expressed in radians

Question 4

Explain why the XY graph displays a circle?
Locus of sinwt vs. coswt inscribes a circle.

Question 5

Explain the signal as viewed on the $X Y$ graph ?
DAC-1 drives the horizontal X axis of the $X-Y$ display, whilst DAC-O drives the vertical Y axis.

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 1: Vector arithmetic

Question 6

Write the equation for signals at DAC-1 and DAC-0 as a function of time in the form: $A \cdot \cos (w t+\theta)$.
$D A C-1=1 \cdot \cos (w t-15 \mathrm{deg})$
$D A C-0=1.2 \cos (w t+75 d e g) ;$ Degrees shown for convenience. Should be expressed in radians.

Question 7

Measure and document the equation for the sum of the two sinusoids. Compare this with the expected resultant using the phasor method.

Define $D A C-1=1 \cos (w t+0)$, then $f+g=1.4 \cdot \cos (w t+45 d e g)$, as phase difference is
$1.25 / 10 * 360=45$ degrees or $\pi / 4$ radians. Phasor gives the same.

Question 8

What is the output sum signal for these settings? Is this expected? Explain.
O. expected as the signals null each other.
+180 degree shift is the same as -180 degree shift.

Phase (degrees)	Resultant amplitude (Vpk)	Phase (degrees)	Resultant amplitude (Vpk)
0	2	210	-1.75
30	1.75	240	-1
60	1	270	0
90	0	300	1
120	-1	330	1.75
150	-1.75	360	2
180	-2		

Table 1: resultant amplitude readings

Graph 2:plot of resultant from measurements

Question 9

What is the equation for this resultant signal?

Question 10

What is the equation for this resultant signal for $a 1=0.5$?

$$
N(t)=4.5 .2^{-1000 t}
$$

Question 11

What is another term for the time constant when $\mathrm{al}=0.5$?
Halflife

amalyyser
䍖
䚌
E
口
5788

Experiment 8-A Fourier Series analyser

Question 1

How would you expect the summation of to look if you could add up many more harmonics? Similar shape, with maximum reaching " n " for n harmonics.

Corners becoming squarer.

Question 2

What is its peak amplitude and is this as expected?

10V. Yes, as cosine harmonics are equal to 1 at $t=0$.

Question 3

Is the fundamental an odd or even function? Is the summation odd or even?

Even. Even

Question 4

Write the equation for the summation of the 10 signals? Is it symmetrical about the X axis?
$\cos (1 \omega t)+\cos (2 w t)+\cos (3 w t)+\ldots+\cos (10 w t)$
No.

Question 5

Vary the amplitudes and notice how the signal changes. You may set the amplitude of certain components to 0 as you see fit. Can you create a wave form which starts at a zero value? Write the equation for your new varied amplitude signal? Does it start at a zero value?

Will never start at a zero value.

Question 6

How would you expect the sine summation of to look if you could add up many more harmonics?
Mainly zero level with positive and negative impulses at the fundamental.

Question 7

What is its peak amplitude and is this as expected? Is this an odd or even function?

Approx. 7.5V.

Odd

Question 8

Vary the amplitudes and notice how the signal changes. You may set the amplitude of certain components to 0 as you see fit. Can you create a wave form which starts at a non-zero value? Write the equation for your new varied-amplitude signal ? Does it start at a non-zero value? Is it symmetrical about X axis.?

No.All sinewaves harmonics are equal to 0 at $t=0$.

Yes

Question 9

Write the equation for the summation of these 2 waves? Write the equation for the summation in terms of the sine wave with a non zero phase shift.

```
\(\sin (w t)+\cos (w t)=1.4 \sin (w t+45\) degrees \()=1.4 \sin (w t+\pi / 4)\)
```


Question 10

Describe how the summation changes as you vary the respective amplitudes?

The resultant amplitude \& phase vary.

Question 11

For a particular pair of amplitudes you have set, write the equation for the summation in terms of sine and cosine as well as its equivalent polar representation?
$\sin (w t)+\cos (w t)=1.4 \sin (w t+45$ degrees $)=1.4 \sin (w t+\pi / 4)$
$1 / /-90 \mathrm{deg}+1 / / 0 \mathrm{deg}=1.4 / /-45 \mathrm{deg}$

Graph 2: components \& resultant

Question 12

What is the output value at the end of the integration period? HINT: the I\&H function will hold the final value.

Zero volts.

Question 13

What is the average value of these three products?
\qquad
\qquad

Question 14

What is the average value of these products?

Non-zero, approx 2 V , however note that the TLPF gain has not been set to unity, so the only
Valid conclusion is that the result is non-zero.

Question 15

Write the complete formula for the product of a cosine, Acoswt, by itself? What do the terms represent?
$\cos (w t) * \cos (w t)=\frac{1}{2} \cos (2 w t)+1 / 2$
$\operatorname{Cos}(2 w t)$ is the sum term with 0 average, and $\frac{1}{2}$ the difference term, which is also a DC component.

Harmonic number	sine (V)	cosine (V)
1st	0	1
2nd	0.3	0
3rd	1	0.5
4th	0	0
5 th	0	0
6th	0	1
7 th	2	0
8th	0	0
9th	0	0
$10 t h$	0	0
$D C(V)=$	n / a	0

Table of measured coefficients

Question 16

How do your readings compare with expectations?. Explain any discrepancies .

Very accurate.

Question 17

What do you notice about their phase relationship? Is this to be expected? Explain.

They are drifting relative to each other. As they are not synchronized, this is to be expected.

Input frequency (Hz)	TLPF output pp swing (V)	Half of pp (V)	Entered values	Calculated resultant (V)
100	2	1	$1 ; 0$	1
200	0.6	0.3	$0 ; 0.3$	0.3
300	2.2	1.1	$0.5 ; 1$	1.11
400	0	0	$0 ; 0$	0
500	0	0	$0 ; 0$	0
600	2	1	$1 ; 0$	1
700	4	2	$0 ; 2$	2
$D C(V)=$	-	0.45	0.5	0.5

Table of measured coefficients

Question 18

Can you explain if your readings differ in some places from the actual value?
HINT: you have one value per harmonic instead of two. Consider the previous discussion above about resultants in your answer. And to allow for MULTIPLIER and TLPF gains.

Readings are accurate. Measurement error may arise.
Value at 300 Hz is a resultant of 2 orthogonal components.

Input frequency (Hz)	TLPF output amplitude (V)	Scaled measured values (V)	Calculated resultant (V)
100	1.6	1	1
200	<0.1	-	0
300	0.5	0.31	$1 / 3=0.33$
400	<0.1	-	0
500	0.3	0.19	$1 / 5=0.2$
600	0.2	-	0
700	2.25	0.125	$1 / 7=0.14$
$D C(V)=$	2.25	2.4	

Table of measured coefficients for squarewave

Question 19

Why are some of the harmonics hard to detect?

They are quite small, and even harmonics are not present.

Question 20

Can you now detect even harmonics in the squarewave of 20% duty cycle ?

Yes, they are now present.

Question 21

Compare your measured coefficients for the first 4 odd harmonics as ratios to that expected by theory? Remember to normalize the measurements for the comparison.

Comparison in the table above. Results are close to theory after normalizing.

References

Langton.C.," Fourier analysis made easy", www.complextoreal.com

10

Experiment 9 - Spectrum analysis of various signal types

Pre-requisite work

Question 1

What is the conversion equation for a linear voltage scale to a logarithmic scale?
$\log (d B)=20 \log _{10}(V 2 / V 1)$; where $V 2 / V 1$ is a linear ratio

Question 2

What linear ratio does a -6dB gain equal ?
$-6 d B=20 \log _{10}(V 2 / V 1) ;$ so V2/V1 $=10 \exp (-6 / 20)=0.5$

Saying a level has reduced by -6 dB is equivalent to saying it has halved. (+6dB $==$ doubling)

Question 3

List some of the more important characteristics of PN sequences:

Maximal length sequences with n stages (LFSR) repeat every 2^{n-1} clocks. Maximal length
Sequences are orthogonal ie: are correlated at only one point. \# runs is well defined.

Question 4

Multiply a sinewave with a squarewave so as to create a halfwave rectified sinewave and calculate its spectrum:

Question 5

At what frequencies do the nulls occur at?
$n \times 5000 ; n=1,2,3 \ldots .$.

Question 6

What is the mathematical relationship between null spacing and the pulse width ?
$n \times 1 /$ pulse width ; $n=1,2,3, \ldots$

Question 7

What are the characteristics of the $\sin (x) / x$ form that you are looking for ?

Zero crossing points $(\sin x)$, amplitude of envelope ($1 / x$)

Question 8

What is the general trend that you are observing as the duty cycle tends towards 0 ?
Null being pushed out to infinity, and spectrum envelope tending to become a constant level.

Question 9

Using the various findings so far, what shape you expect the spectrum of a single pulse, that is, a pulse train with very large separation between pulses, to have?

It should have components to infinity, all with a constant amplitude.

Question 10
At what time instants does the sync pulse have a zero crossings?

Every 0.1 ms

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 1: sync pulse train time and frequency responses

Question 11

Why do you suppose state [00000] is illegal?

The system would lock and never change state from 00000

Question 12

Where do the nulls occur? What is the separation between harmonics? What do these values relate to?

At multiples of the clock rate, $2000,4000,6000 \mathrm{~Hz}, \ldots$

Measured to be approx 66 Hz . Theory states $2000 / 31=64.5 \mathrm{~Hz}$

Question 13

Where do the nulls occur? What is the separation between harmonics? What do these values relate to?

At multiples of the clock rate. These cant be measured. The separation should be

Clk rate/16383 Hz...too close to measure with our current setup.

Question 14

How many harmonics are visible in the filter output?

5 or 6 . Not satisfactory, too repetitive. Period too short.

Question 15

How many harmonics are visible in the filter output? Calculate this.

Seperation $=2000 / 16383=0.122 \mathrm{~Hz}$. Impossible to determine visually.
$250 \mathrm{~Hz} / 0.12=2047$ harmonics.

Question 16

Is this analog noise signal periodic? What is its period? Calculate this

Yes, though it is not measurable with current setup.
Period $=16383 \times 1 / 2000=8.2$ seconds. (NB $8.2 \mathrm{sec}=1 / 0.122$ from previous question $)$

Graph 2: clipped signals and spectra
Question 17
What effect does a higher level of clipping have on the spectrum of the clipped signal ?

Question 18

What is the relationship between the input frequency and the output harmonic frequencies?

Harmonics occur at integer multiples of the input frequency.

Question 19

What can you say about the spectrum of the rectified sine wave? Is this what you would have expected? Refer back to your pre-lab preparation questions.

Yes. As expected. Far less harmonics than for the clipped case.

Question 20

Is the clipping process a linear or non-linear process? Explain.

Non-linear. Clipping creates harmonics which were not existent in the original signal.

Experiment 10 - Time domain analysis of an RC circuit

Pre-requisite work

Question 1: the step response

This question follows the integration method in Section 4 of S.K. Tewksbury's notes http://stewks.ece.stevens-tech.edu/E245L-FO7/coursenotes.dir/firstorder/cap-difeq.pdf
(a) Apply elementary circuit theory to show that the voltage equation for the RC circuit in Fig $x x x$ is

$$
\text { V_in }(t)=i(t) \cdot R+V_{-} \operatorname{cap}(t)=i(t) \cdot R+Q(t) / C \quad \text { Eq prep1.1 }
$$

Where $Q(\dagger)$ is the charge in capacitor C.
(b) Show that this can be expressed as

$$
(d / d t)\left(V _ \text {in }\right)=R . d i / d t+i / C
$$

Consider the case where $\mathrm{V} _\mathrm{in}(\dagger)$ is a step function of amplitude $\mathrm{V} _0$ and the capacitor charge $Q(t)=0$ at $t=0$. Show that for $t>0(d / d t)\left(V _\right.$in $)=0$ and the DE reduces to

$$
d i / d t=-a . i \quad[a=(1 / R C)]
$$

Use $(d / d t) \log e(i)=1 / i$ to show that the solution of the $D E$ is

$$
i(t)=i _0 \exp (-a . t) \quad(t>0) \quad\left[i _0=V _0 / R\right]
$$

(c) Use Eq 1.1 to show that

$$
\text { V_out }(t)=\text { V_cap }(t)=\text { V_in }(t)-\text { R.i_o exp }(-a . t)
$$

Hence the step response V_out/V_in = (1-exp(- a.t))
(d) Plot the result in (c) for $a=1000$
(e) What is the asymptotic value of the step response as tincreases indefinitely? Show that the step response rises to ($1-1 / e$) of its final value at $t=1 /$ a.

$$
\begin{aligned}
& \text { SIGEx Ext } 10 R C \text { in Time Domain } \\
& \text { Prep solutions PI } \\
& \text { P1 (a) and (b) } \\
& \text { For } V_{\text {in }}=\text { step function } \quad \frac{d}{d t} V_{\text {in }}=0 \text { for } t>0 \\
& \Rightarrow \frac{d i}{d t}=-\alpha i \Rightarrow \frac{d i}{i}=-\alpha d t \\
& \Rightarrow d\left(\log _{e}(i)\right)=-\alpha(\alpha t) \Rightarrow \log _{e}(i)=-\alpha t+\text { constant } \\
& \Rightarrow i=\exp (-\alpha t+\text { constant })=e^{\text {cons }} e^{-\alpha t} \\
& =i_{0} e^{-\alpha t} \\
& \text { At } \left.t=0 \quad i=i_{0}=\frac{V_{0}}{R} \text { (since } V_{\text {cap }}=0\right) \\
& \text { (} V_{0} \text { is the amplitude of the input step function) } \\
& \text { Confirm that } i=i_{0} e^{-\alpha t} \text { is a solution of the } D E \text { : } \\
& \text { LH }=\frac{d i}{d t}=\frac{d}{d t}\left(i_{0} e^{-\alpha t}\right)=-\alpha i_{0} e^{-\alpha t}=-\alpha i=\text { RHo } \\
& V_{\text {out }}(t)=V_{\text {in }}(t)-R_{i_{0}} e^{-\alpha t} \\
& \text { For } t>0 \quad V_{\text {in }}=V_{0} \Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=1-\frac{R i_{0}}{V_{\text {in }}} e^{-\alpha t} \\
& \Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}}=1-\frac{R i_{0}}{V_{0}} e^{-\alpha t}=1-e^{-\alpha t} \text { since } i_{0}=\frac{V_{0}}{R}
\end{aligned}
$$

Question 2: the impulse response

(a) Describe the main properties of the theoretical impulse function.

Show that differentiation of the unit step function writ \dagger produces a unit impulse at $t=0$. Apply this to the step response result in Question P1(c) to show that the impulse response $h(t)$ of the RC circuit is
a. $\exp (-a . t)$

$$
\begin{aligned}
& \text { SIGEx Ext } 10 \text { RC in the Time Domain } \\
& \text { Prep Solution P2 (impulse response) } \\
& \text { (a) Main properties of the theoretical impulse function } \\
& \text { (i) } \delta(t)=0 \text { for all } t \text { excel } f t \quad t=0 \\
& \text { (ii) } \int_{-\infty}^{\infty} \delta(t) d t=1 \\
& \text { (iii) Convolution } \int_{-\infty}^{t} \delta^{t}(\tau) x(t-\tau) d \tau=x(t) \\
& \text { It is evident that the derivative du of the } \\
& \text { unit step function behaves bike an impulse } \\
& \text { in respect of the above bi focuties. } \\
& \frac{d}{d t}(\text { step resp })=\frac{\partial l}{\partial t t}\left(1-e^{-\alpha t}\right)=-\left(-\alpha e^{-\alpha t}\right)=\alpha e^{-\alpha t} \\
& \text { (b) } \\
& \text { It is mot possible to proderee a pulse } \\
& \text { with infinite ampliterde and ono with. } \\
& \text { A rectangular pulse provides a practical } T_{w}+1-T \\
& \text { approximation. To lu useful for } \\
& \text { measuring impulse responses the pulse width } T_{W} \\
& \text { must lu at least an order of magnituole } \\
& \text { smaller than the duration of the smallest feature } \\
& \begin{array}{l}
\text { of the response. However. if } T_{w} \text { is execssively } \\
\text { Small, the response amplituole may be inaolaquate }
\end{array} \\
& \text { for displaying on a sCope. } \\
& \text { For the RC circuit in Q.P1, ow should be } \lesssim \frac{(1 / R C)}{10} \\
& \text { ide. not greater than around } 100 \mu s e c \text {. } \\
& \text { We en think of the finite pulse violth } T_{W} \text { as causing } \\
& \text { a bluriving of the response, } t, g \text {. as with an out } \\
& \text { of focus camera. }
\end{aligned}
$$

(b) Explain why the impulse function can only be approximated in practice.

Sketch an impulse approximation realized as a finite width pulse. Explain why an excessively narrow pulse is undesirable in practical applications. Estimate a pulse width that would be suitable for use with the case in Question P1. Indicate your reasoning.
(c) Using the property in (a) we could generate the impulse response by first recording the step response, then differentiating. Compare this alternative with the use of a finite width pulse input. Include discussion of signal peak limitations and output amplitude considerations.
(d) Show that the impulse response falls to $1 /$ e of its initial value at $t=1 / a$

$$
\begin{aligned}
& \text { SIGEx Expt10 } R C \text { in the Time Domain } \\
& \text { Prep Solution } P Z \text { (pagez/2.) } \\
& \text { (c) } \\
& \begin{array}{l}
\text { Generating a step response is straightforward, } \\
\text { hikewire differentiation (ecg. using a digital scope). } \\
\text { A major advantage of this approach is that large } \\
\text { input peaks are avoioced. The suritching time } \\
\text { of the step needs to be adequately fast. }
\end{array} \\
& \text { (d) } \\
& \text { From } \mathrm{Pl} \\
& \text { Step response }=1-e^{-\alpha t} \\
& \frac{d}{d t}(\text { step } \operatorname{resp})=\alpha e^{-\alpha t}=L_{(}(t) \\
& \text { at } t=\frac{1}{\alpha} \quad h(t)=\alpha / e=\frac{1}{e} h(0)
\end{aligned}
$$

ENS PD

Question 3: convolution and response to an exponential input

This question introduces convolution and its application in the analysis of systems like the RC circuit in Q. P1.
(a) The convolution of the time functions $\times _1$ and $\times _2$ can be expressed as

$$
x_{-} 1 * x_{-} 2=\int_{0}^{t} x_{-} 1(\tau), x_{-} 2(\tau-t) d \tau \quad[\text { for } t>0]
$$

Note that the convolution is a function of t and that tau is a dummy variable that has no further role after integration.

Show that changing the order ($x _2$ * x_1) does not change the result.
Show that if $x _1$ is a unit impulse the convolution $x _1$ * $\times _2=x _2(\dagger)$.

Suppose we approximate a continuous time signal $\times _1(\dagger)$ as a sum of very narrow contiguous pulses, each of which can be thought of as representing an impulse function (each with its individual amplitude). Suppose next that this pulse train representation of $x _1(t)$ is then applied as input to the system introduced in Q. P1. Each of the pulses in the train will produce an individual output that will be a close (weighted) approximation to the system's impulse response. The overall output will be the sum of these (overlapping) weighted impulse response approximations.
Demonstrate that this sum is effectively the convolution of $x _1$ and the system's impulse response $h(t)$. (Invoke the usual limit methods to morph the discrete sum into a continuous time integral.)
(b) Show that for $t>0$, the convolution for the case

$$
x _1(t)=\exp (-a 1 . t) \text { and } \times _2(t)=\exp (-a 2 . t) \quad[a 1 \text { N.E. a2] }
$$

is $(1 /(a 2-a 1)) \cdot(\exp (-a 1 . t)-\exp (-a 2 . t)$
(c) Sketch the graph of the result in (b) versus t over the range $t>0$. Show that for positive values of $a 1$ and $a 2$ the function is positive for $t>0$, and that it is zero at $t=0$ and $t->$ infinity. Find the peak and the corresponding value of t for $a 1=0.5$ and $a 2=1.1$.
(d) Use the results in (a) and (b) and in Q. P2(a) to obtain the response of the RC circuit in Q.P1 when the input is

$$
x _1(t)=\exp (-a 1 . t)
$$

(e) Repeat the tasks in (b) and (c) for the case a1 $=a 2=a$.

NB: a useful reference for this question is Schuam Laplace Transforms (1965); p45 (convolution of two exponentials)

SIGEx Expt $10 \quad R C$ in Time Domain
Prep Solutions P3(a)-(b)

$$
\begin{aligned}
& \text { P3(a) Changing the order does not affect the result; } \\
& \text { ie., } x_{2} * x_{1}=x_{1} * x_{2} . \\
& \text { Proof: } \\
& x_{2} * x_{1}=\int_{0}^{t} x_{2}(\tau) x_{1}\left(t-\tau^{\prime}\right) d \tau \\
& \text { Put } \tau^{\prime}=t-\tau \Rightarrow x_{2} * x_{1}=\int_{\tau=0}^{\tau=t} x_{2}\left(t-\tau^{\prime}\right) x_{1}\left(\tau^{\prime}\right) d\left(t-\tau^{\prime}\right) \\
&=-\int_{\tau^{\prime}=t}^{\tau^{\prime}=0} x_{1}\left(\tau^{\prime}\right) x_{2}\left(t-\tau^{\prime}\right) d \tau^{\prime} . \\
&=\int_{0}^{t} x_{1}\left(\tau^{\prime}\right) x_{2}\left(t-\tau^{\prime}\right) d \tau^{\prime}=x_{1} * x_{2} \quad \text { QB }
\end{aligned}
$$

Convolution with an impulse fraction.

$$
x_{1} * x_{2}=\int_{0}^{t} \delta(\tau) x_{2}(t-\tau) d \tau \quad(t \geqslant 0)
$$

$$
\begin{aligned}
& =\int_{0}^{t} \delta(\tau) x_{2}(t) d \tau \quad\left[\begin{array}{l}
\text { integrand }=0 \\
\text { exceptat } \tau=0
\end{array}\right] \\
& =x_{2}(t) \int_{\delta}^{t} \delta(\tau) d \tau
\end{aligned}
$$

$$
\begin{aligned}
& =x_{2}(t) \int_{0}^{t} \delta(\tau) d \tau \\
& =x_{2}(t) \text { since } \int_{0}^{t} \delta(\tau) d \tau=1
\end{aligned}
$$

P3(b) Convolution of two exponential functions

$$
x_{1}=e^{-\alpha_{1} t} \quad x_{2}=e^{-\alpha_{2} t}
$$

$$
x_{1} * x_{2}=\int_{0}^{t} e^{-\alpha_{1} \tau} e^{-x_{2}(t-\tau)} d \tau=e^{-\alpha_{2} t} \int_{0}^{t} e^{\left(x_{2}-\alpha_{1}\right) \tau} d \tau
$$

$$
=\frac{e^{-x_{2} t}}{\alpha_{2}-x_{1}}\left[e^{\left(\alpha_{2}-x_{1}\right) \tau}\right]_{0}^{t}
$$

$$
=\frac{1}{\alpha_{2}-\alpha_{1}}\left(e^{-\alpha_{1} t}-e^{-\alpha_{2} t}\right) \quad t>0, \alpha_{2} \neq \alpha_{1}
$$

$$
\begin{aligned}
& \text { SIGEx Ext } 10 \quad R C \text { in Time Domain } \\
& \text { Prep Solutions P3 (c) } \\
& \text { P3(c)-(e) } \\
& \alpha_{2}>\alpha_{1} \text { : den }>0 \text { and } e^{-\alpha_{1} t}>e^{-\alpha_{2} t} \Rightarrow x_{1} * x_{2}>0 \\
& \alpha_{2}<\alpha_{1} \text { : den<0, } \quad e^{-\alpha_{1} t}<e^{-\alpha_{2} t} \Rightarrow x_{1} * x_{2}>0 \\
& {\left[\begin{array}{lll}
\alpha_{1}>0 & \alpha_{2}>0 & t>0]
\end{array}\right.} \\
& \text { By substitution the result is zero at } t=0 \text { and } t \rightarrow \infty \\
& \text { Hence there will be a maximum. } \\
& \text { We can find the maximum by } \\
& \text { differentiation } \\
& \frac{d}{d t} x_{1} * x_{2}=\frac{1}{\alpha_{2}-\alpha_{1}}\left[\left(-\alpha_{1}\right) e^{-\alpha_{1} t}-\left(-\alpha_{2}\right) e^{-\alpha_{2} t}\right]=0 \\
& \left.\Rightarrow \alpha_{1} e^{-\alpha_{1} t}=\alpha_{2} e^{-\alpha_{2} t} \Rightarrow-\left(\alpha_{2}-\alpha_{1}\right) t=\log _{e} \frac{\alpha_{2}}{\alpha_{1}}\right) \\
& \Rightarrow \text { maximum at } t_{P^{k}}=\frac{1}{\alpha_{1}-\alpha_{2}} \log _{e}\left(\frac{\alpha_{2}}{\alpha_{1}}\right) \\
& \text { For } \alpha_{1}=0.5, \alpha_{2}=1.1 \quad t_{p k}=1.3141 \\
& \text { Gradient }(t=0)=\frac{\alpha_{2}-\alpha_{1}}{\alpha_{2}-\alpha_{1}}=1 \\
& P 3(d) \text { Let the time constant of the } R C \text { circuit }=\frac{1}{\alpha_{2}} \\
& \text { Quipu } V_{\text {out }}=x_{1} * h \text { where } h(t)=V_{0} e^{-\alpha_{2} t} \text { (impubs (response) } \\
& \Rightarrow V_{\text {out }}=\int_{0}^{t} e^{-\alpha_{1} t} \cdot V_{0} e^{-\alpha_{2}(t-\tau)} d \tau \\
& =V_{0} \cdot \frac{1}{\alpha_{2}-\alpha_{1}}\left(e^{-\alpha_{1} t}-e^{-\alpha_{2} t}\right)(\text { from } b) \quad\left(\alpha_{2} \neq \alpha_{1}, t>0\right) \\
& \text { P3(e) } x_{2}=\alpha_{1}=\alpha \\
& x_{1} * x_{2}=\int_{0}^{t} e^{-\alpha \tau} e^{-\alpha(t-\tau)} d \tau=e^{-\alpha t} \int_{0}^{t} e^{0} d \tau=t e^{-\alpha t} \\
& \text { END Pf }
\end{aligned}
$$

Question 4: response to a sinusoidal input

In Q. P1 we sought the output of the RC circuit in Fig $x x x$ for the case in which the input is a step function. This result was extended in Q. P2 and P3 for an impulse function input and for an exponential input. Now we examine the solution when the input is sinusoidal. This case is of special importance in this work as it opens the way to powerful tools for the solution of systems of much greater complexity than the introductory example under investigation here.
(a) Use the result in Q.P1(a) to show that

$$
\text { V_in } \left.(t)=R C .\left(d V _ \text {out } t / d t\right)+V \text { _out (} t\right)
$$

To simplify the analysis we will use the complex exponential A_in.exp(jwt) to represent the input sinusoid [recall that $\exp (j w t)=\cos (w t)+j \cdot \sin (w t)]$.
In Q. P1(b) we obtained a solution of the DE by direct integration. However, sometimes it turns out that invoking a "feeling lucky" approach can provide the desired result:
a solution of the form
V_out = A_out . $\exp \left(j \cdot p h i _o u t\right) . \exp (j w . t)$
is substituted into the RHS in the above DE.
Show that this is a solution for a suitable value of $A _o u t$. exp(phi_out). (The suitable value is the one that makes the RHS = LHS). With $A _$in $=1$, show that the sought value is

$$
\text { A_out . exp(phi_out })=1 /(1+j w R C)
$$

Hence show that V _out $=\mathrm{V}$ _in $.1 /(1+\mathrm{jwRC})=\mathrm{V}$ _in. $(1 / R C) /(\mathrm{jw}+(1 / R C))$

Note that this result has a very interesting feature:
the output has the same form as the input.
[To discover the importance of this property it is worthwhile to think about the use of other waveforms to express the output in terms of the input. For example, a squarewave, a periodic ramp, a sawtooth (an optional lab exercise).]
(b) Use the result in (a) to obtain a formula for the ratio of output amplitude to input amplitude as a function of w for $1 / R C=1000(\mathrm{rad} / \mathrm{sec})$. Sketch the result, and find the value of w for which the ratio is 3 dB .

SIGEx Expt.10 RC in the time domain
Prep. solution Q.P4 (sinusoidal input)
(a)

We return to the $D E$ PI. 1 in PI (c):

$$
\begin{aligned}
& V_{\text {in }}(t)=R \cdot i(t)+V_{\text {cap }}(t)=R i(t)+\frac{1}{c} Q(t) \\
& i(t)=\frac{d Q(t)}{d t} \Rightarrow V_{\text {in }}=R \frac{d Q}{d t}+\frac{1}{c} Q \\
& V_{\text {out }}=V_{\text {cap }}=\frac{Q}{c} \Rightarrow Q=C V_{\text {out }} \\
& \Rightarrow V_{\text {in }}=R C \frac{d V_{\text {out }}}{\text { ot }}+V_{\text {out }} \quad \text { QED }
\end{aligned}
$$

Now we proceed to solve for $V_{\text {out }}$ when $V_{\text {in }}=A_{i n} e^{j \omega t}$, and consider $V_{\text {out }}=A_{\text {out }} \cdot e^{j \phi_{\text {out }}} \cdot e^{j \omega t}$ as a candidate solution. Substituting this for but into the RHS of the $D E$ gives
$R H S=R C A_{\text {out }} e^{j \phi_{\text {out }}} \cdot j \omega e^{j \omega t}+A_{\text {out }} e^{j \phi_{o u t}} e^{j \omega t}$

$$
=(j \omega R C+1) A_{\text {out }} e^{j \phi_{o u t}} \cdot e^{j \omega t}
$$

It is evident that

$$
\begin{aligned}
& \text { RUS }=\text { Constant } \cdot e^{j \omega t} \\
& \text { LHS }=\text { constant }_{L} \cdot e^{j \omega t}
\end{aligned}
$$

Hence the candidate solution for Vout satisfies the DE if constant $R_{-}=$constant L_{L}
ice $A_{\text {out }} e^{j \phi_{\text {out }}}(j \omega R C+1)=A_{\text {in }}$.
For given $R C$ (and A in $=1$, without loss of generality)

$$
\begin{aligned}
& A_{\text {out }} e^{j \phi_{\text {out }}}=\frac{1}{1+j \omega R C}=\frac{1-j \omega R c}{1+(\omega R C)^{2}} \\
& \Rightarrow A_{\text {out }}=\left(1+(\omega R C)^{2}\right)^{-\frac{1}{2}} \\
& \phi_{\text {out }}=-\tan ^{-1}\left(\frac{\omega R c}{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { SIGEx Exptio RC in the Time Domain } \\
& \text { Prep Solution Q.P4 (p.2/2) } \\
& \text { (a) cad. } \\
& \text { To obtain an expression for out } / V_{\text {in }} \text { we note that } \\
& \text { the RAS of the DE can he expressed as }(1+j \omega R C) V_{\text {out }} \\
& \text { Hence, } \\
& V_{\text {in }}=(1+j \omega R C) V_{\text {out }} \\
& \text { ide., } \frac{V_{\text {out }}}{V_{\mathrm{m}}} \\
& =\frac{(1 / R C)}{(j \omega+(1 / R C))} \\
& \text { (b) } \\
& \text { At } \omega=\alpha \text { the ampliende ratio is } \frac{1}{\sqrt{2} ~}(\alpha=1000) \\
& \text { This is } \frac{1}{\sqrt{2}} \text { of the value at } \omega=0 \text {. } \\
& \text { In } \mathrm{AB} \text { this is } 20 \log _{10}(1 / \sqrt{2})=-3 \alpha B \\
& \text { In the Bode plat representation of the gain vs frequency } \\
& \text { both axes are logarithmic. } \\
& \text { When } \omega \gg \alpha \text { |Volt }\left|/\left|V_{\text {in }}\right|=\frac{\alpha}{\omega}\right. \\
& \text { Expressed in } d B \text { this is } 20 \log _{10} \alpha-20 \log _{10} \omega \text {. } \\
& \text { Hence we have a straight line roll off asymptote } \\
& \text { with gradient } 20 \mathrm{~dB} / \text { olecade } \\
& \text { END Pf }
\end{align*}
$$

Question 5: solution using the Laplace Transform

(a) Look up the definition $Y(s)$ of the Laplace transform of the function $y(t)$. Show that the Laplace transform of $(d / d t) y(t)$ is $s Y(s)$.
Solve Eqn P4.1 as a function of s by applying the Laplace transform to both sides (note that no restriction is imposed on the form of the input).

Compare this result with the solution obtained with input

$$
\text { V_in }(t)=\text { A_in.exp(jwt) }
$$

Comment on similarities and differences.
(b) The transfer function is defined as $V_{_}$out (s)/V_in(s). Use the result in (a) to write down the
transfer function of the $R C$ circuit.
(c) Find the Laplace transform of $y(t)=\exp (-a . t)$. Compare this with the transfer function in (b).
(d) What is the relationship between the transfer function and the impulse response that is apparent from (c)?
(e) On the basis of (d), what is the operation in the s domain that corresponds to convolution in the time domain? Confirm your answer by looking up the convolution theorem.

SIGEx Expt 10 RC in the time domain
Prep Solution P5 (Laplace transform)
(a)

$$
\mathscr{L}\{y(t)\}=Y(s) \cong \int_{0}^{\infty} y(t) e^{-\Delta t} d t
$$

Laplace transform of the derivative:

$$
\mathcal{L}\left\{y^{\prime}(t)\right\}=\int_{0}^{\infty} e^{-s t} \frac{d}{d t}(y(t)) d t=\int_{0}^{\infty} e^{-s t} d y(t)
$$

Integrating by parts:

$$
\left.=e^{-\Delta t} y(t)\right]_{0}^{\infty}-\int_{0}^{\infty} y(t) d e^{-s t}
$$

For s finite at $t=\infty \quad e^{-\Delta t}=0$ (subject to conditions on s)
at $t=0 \quad e^{-\Delta t}=1$
Hence,

$$
\mathcal{L}\left\{y^{\prime}(t)\right\}=-y(0)+s \mathcal{L}\{y(t)\}
$$

$$
\text { For } y(0)=0 \text { we have } \mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)
$$

We now use this result to solve Eqn P4.1

$$
\begin{aligned}
V_{\text {in }}(t) & =R C \frac{d}{d t}\left(V_{\text {out }}(t)\right)+V_{\text {out }}(t) \\
\Rightarrow V_{\text {in }}(s) & =R C S V_{\text {out }}(s)+V_{\text {out }}(s) \\
\Rightarrow V_{\text {out }}(s) & =\frac{V_{\text {in }}(s)}{R C \text { s }+1} \\
\Rightarrow \frac{V_{\text {out }}}{V_{\text {in }}} & \left.=H(s)=\frac{\alpha}{s+\alpha} \quad \text { [This is the result }\right]
\end{aligned}
$$

Comparison with result in P4: iolentical when $s=j \omega$. This motivates the exploration of Laplace Transform theory as a tool for the analysis of systems like the RC circuit.

$$
\begin{align*}
& \text { SIGEx Ext } 10 \text { RC in the time domain } \\
& \text { Prep Solution P5 (p2/2) } \tag{c}\\
& \text { In (a) we found that in the s domain out (s) } \\
& \text { is the product of the input } V_{\text {in }}(s) \text { and the } \\
& \text { transfer furretion } H(s) \\
& \text { In } Q . P 3(d) \text { we found that in the time domain } \\
& \text { Volt }(t) \text { is the convolution of the input } V_{i n}(t) \text { and } \\
& \text { the impulse response } f(t) \text {. } \\
& \text { This suggests the idea that the Laplace } \\
& \text { transform of the convolution of two functions } \\
& \text { is the product of their individual Laplace } \\
& \text { transforms. Indeed this is known as the } \\
& \begin{array}{l}
\text { convolution theorem. The derivation is given } \\
\text { in most standard texts. }
\end{array} \\
& \text { END Q.P5 } \\
& \text { Solution. }
\end{align*}
$$

Question 6: synthesized model of RC circuit

(a) Consider Eq P4.1 in the Laplace domain, ie.,

$$
\text { s.V_out }=a . V_{\text {_in }}+(-a) . V_{\text {_out }}
$$

Use the block diagram in Task 25 as a guide to model this equation using an integrator (1/s). Note that s.V_out(s) appears at the integrator input.
(b) In practical applications the use of a scaled integrator (k / s) may be necessary. Adjust the system equation so that the LHS is (s/k).V_out, and modify the model accordingly.
(c) Suppose $k=200$ and $a=1000$. Determine the corresponding value of $a 1$ in the block diagram in Task 25.
(c) The new value of the coefficient a, is $\frac{1000}{200}=5$

$$
\text { Note that } a, \text { is dimension less. However } k \text { and } \alpha
$$

$$
\text { are in units of } \sec ^{-1} \text {. The feedback gain is negative. }
$$

Question 7

How long will it take this RC NETWORK to rise to a level 37% below its final level?
It should take 1 time constant $=1 \mathrm{~ms}$
$\begin{aligned} & \text { SIGEx Ext } 10 \text { RC in the time domain } \\ & \text { PREP SOLUTION PG (frequency scaling) }\end{aligned}$
(a)
$V_{\text {in }}$
Block diagram of system equation
$\begin{aligned} & \text { Gin can be adjusted to suit the } \\ & \text { available amplitude range. }\end{aligned}$
(le)
The adjusted system equation is
$\left(\frac{d}{k}\right) V_{\text {out }}=\left(\frac{\alpha}{k}\right) V_{i n}+\left(-\frac{\alpha}{k}\right) V_{\text {out }}$
In the above diagram
$\begin{aligned} & \text { the integrator } \frac{1}{s} \text { is replaced log } \frac{k}{s} \\ & \text { the feedbrek gain }-x \text { becomes }-\frac{\alpha}{k}\end{aligned}$
the adder ontpat is $\frac{A}{k}$ out

Question 8

Calculate the expected real circuit step response of the RC NETWORK using the real circuit values and real circuit input values. These values are available in the User Manual. For your convenience they are $R=10 \mathrm{kohm}$, and $C=100 \mathrm{nF}$

1 ms
Measured response corresponds with theory.

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 1: step and impulse responses

Question 9

What is the width if the impulse. What is its maximum amplitude?
$0.1 \mathrm{~ms} ; 4.8 \mathrm{~V}$

Question 10

What is the equation for the measured impulse response using actual circuit values? How does this compare with theory?

See first part of answer for Q 11

Question 11

Explain why the impulse response reaches the peak value that it does.
HINT: superposition of 2 step responses is involved.
Finite impulse considered to be the sum of 2 step responses separated by 0.1 ms . Hence the
response to $1^{\text {st }}$ step is $1-e^{-t / R C} ;$ for $t>0$.
Response to $2^{\text {nd }}$ step is $-\left[1-e^{-(t-0.0001) / R C}\right]$; for $t>0.0001$; a time delayed response.
Overall impulse response is the sum of these (with $2^{\text {nd }}$ response $=0$ until $t=0.0001$).

The peak is value of $1^{\text {st }}$ response at $t=0.0001$ ie: $1-e^{-0.0001 / 0.001}=0.0952$ (normalized)
Hence $=0.0952 \times 4.8=0.457$ denormalized .

Question 12

What is the equation for the output signal and how does it compare with the theoretical output expected from this network? Refer to your work in preparation question 3.

See prep. 3

Graph 2: exponential pulse response

Question 13

Show that $R C=|1 /(k . a 1)| ;$ where $|k . a 1|=1000$

Graph 3: step and impulse response of synthesized system

Question 14

What values of $a 0$ and $a 1$ have you found give your synthesised system a perfect match to the actual RC NETWORK?
$a 0=+0.84 ; a 1=-0.07$

Question 15

What is the signal at the input to the integrator? Is this expected? Explain:
It is the differential of the output.

Yes,

Question 16
Using the measured values above, what is the actual transfer function for your synthesised network which matches the actual RC network? Show your working.
k measured as 11927.

Question 17

Explain any discrepancies you find between expected theory and measurements. What sources of error are responsible for these?

Graph 4: frequency response and bode plot of synthesized system

The
是
శEFDB Man o Poles and
Laplate domain

Pre-requisite work

Preparation will be required in order for the hands-on lab work to make sense. This guided preparation is a revision of theory you will have covered in lectures and is presented below as a number of computation exercises. This work should be completed before attempting the lab.

Question 1

For the system in Figure 1, obtain a differential equation relating the output $x_{0}(t)$ and the input $u(t)$. Show by substitution that $x_{0}=e^{j \omega t}$ is a solution and determine the corresponding input $u(t)$ that produces this output.

If you are uncomfortable with a complex-valued function to represent the behaviour of a system that is supposed to operate with real-valued signals, $x_{0}=\cos (\omega t)$ or $\sin (\omega t) \operatorname{could}$ be used. However, you will quickly discover that the exponential function has a very useful property that simplifies the math considerably. Remembering that $\cos (\omega t)$ is $\operatorname{Re}\left\{e^{j \omega t}\right\}$, you can carry out the analysis with $e^{j \omega t}$ then simply take the real part of the result. Practitioners generally don't bother with the formality of taking the real part. Moreover, complex valued signals are easily realized in digitally implemented systems, and indeed, frequently used, for example in modulators and demodulators of dial-up modems.

Figure 1: schematic of 2nd order integrator feedback structure without feedforward.

Question 2

From the above, with $x_{0}=e^{j \omega t}$, obtain an expression for the ratio x_{0} / u as a function of $j \omega$ (not just " ω "; the reason for this will emerge shortly). Note that this ratio is complex valued. Then, obtain its magnitude and phase shift as functions of ω (not j ω).
SIGEx\| Solutions P-Z in Laplace

$$
\begin{aligned}
& \text { Prep Question } \frac{2}{\text { From Question 1, ratio of output } x_{0} \text { to input u }} \\
& \qquad \begin{aligned}
\frac{x_{0}}{u} & =\frac{1}{c}=\frac{1}{(j \omega)^{2}+a_{1}(j \omega)+a_{0}} \\
\left|\frac{x_{0}}{u}\right| & =\frac{1}{|c|}=\frac{1}{\sqrt{\left(a_{0}-\omega^{2}\right)^{2}+a_{1}^{2} \omega^{2}}} \\
L\left(\frac{x_{0}}{u}\right) & =-\tan ^{-1}\left(\frac{a_{1} \omega}{a_{0}-\omega^{2}}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { N.B. In the formula for } \searrow\left(\frac{x_{0}}{k}\right) \text { based on } \tan ^{-1} \\
& \text { there is a residual ambiguity of } 180^{\circ} \text {. This is } \\
& \text { readily resolved by plotting } \frac{1}{c} \text { in the } \\
& \text { Complex plane. } \\
& \text { For example } c=-\frac{3}{5}+j \frac{4}{5}
\end{aligned}
$$

Details for the above

$$
\text { Denominator } c=\left(a_{0}-\omega^{2}\right)+j \cdot a_{1} \omega
$$

$$
|c|^{2}=\left(a_{0}-\omega^{2}\right)^{2}+a_{1}^{2} \omega^{2}
$$

$$
X C=\tan ^{-1}\left(\frac{a_{1} \omega}{a_{0}-\omega^{2}}\right)
$$

$$
\Rightarrow\left|\frac{x_{0}}{u}\right|=\frac{1}{|c|}=\frac{1}{\sqrt{\left(a_{0}-\omega^{2}\right)^{2}+a_{1}^{2} \omega^{2}}}
$$

$$
x\left(\frac{x_{0}}{u}\right)=-\underline{L}
$$

Question 3

From the results in Question 1 above, plot the magnitude $\left|x_{0} / u\right|$ versus ω (radians/sec) for the case $a_{0}=0.81, a_{1}=0.64$. Note that there is a progressive fall off as ω increases. Hence, we can think of this system as realizing a lowpass filter.

Question 4

We now consider an alternative way of getting the response. With a little algebra we create a graphical medium that will provide an intuitive environment for visualizing and generating both magnitude and phase responses.
First, return to the expression for x_{0} / u obtained in (a) and replace " $j \omega$ " by the symbol "s". Look upon s merely as a convenient stand in for $\mathrm{j} \omega$. It is not necessary to ascribe any deeper significance to this substitution for the purposes of this lab. The result is the (complex-valued) rational function

$$
\begin{equation*}
x_{0} / u=H(s)=1 /\left(s^{2}+a_{1} \cdot s+a_{0}\right) \tag{Eqn1}
\end{equation*}
$$

For the case $a_{0}=0.81, a_{1}=0.64$ (as in (b), express the denominator quadratic in the factored form $\left(s-p_{1}\right)\left(s-p_{2}\right)$, where p_{1} and p_{2} are the roots. Show that these are given by

$$
\begin{align*}
& p_{1}=0.9\left(\cos \left(110.8^{\circ}\right)+j \cdot \sin \left(110.8^{\circ}\right)\right)=0.9 \exp ^{j 0.616 \pi} \\
& p_{2}=0.9\left(\cos \left(110.8^{\circ}\right)-j \cdot \sin \left(110.8^{\circ}\right)\right)=0.9 \exp ^{-j 0.616 \pi} \tag{Eqn2}
\end{align*}
$$

```
SIGEx II Solutions \(P-Z\) in Laplace domain
```

$$
\begin{aligned}
& \text { Prep Q. } 4 . \\
& \text { We sect to express the roots } p_{1} \text { and } p_{2} \text { in terms of } a_{0} \text { and } a_{1} \text {, } \\
& \text { To simplify the math we exploit the theorem about } \\
& \text { Complex roots of polynomials with real coefficients, namely } \\
& \text { that complex roots occur in coryngate pairs. In } \\
& \text { this example we have } p_{2}=p_{1}{ }^{*} \text {. (The proof is } \\
& \text { straightforward and is given in the addendurn below) } \\
& \text { Multiplying }\left(s-p_{1}\right)\left(s-\beta_{s}\right) \text { we have } s^{2}-\left(p_{1}+p_{2}\right) s+p_{1} p_{2} \\
& \text { Equating coefficient: } \\
& p_{1} p_{2}=p_{1} p_{1}^{*}=\left|p_{1}\right|^{2}=a_{0} \Rightarrow\left|p_{1}\right|=\sqrt{a_{0}} \\
& -\left(p_{1}+p_{2}\right)=-\left(p_{1}+p_{1}^{*}\right)=-2 \operatorname{Re}\left(p_{1}\right)=a_{1} \Rightarrow \operatorname{Re}\left(p_{1}\right)=-\frac{a_{1}}{2} \\
& \text { Express } p_{1} \text { in polar form: } p_{1}=A e^{j \theta} \\
& \text { Hence } A=\left|p_{1}\right|=\sqrt{a_{0}} \\
& \text { With } a_{0}=0.81 \text { and } a_{1}=0.64 \\
& A=\sqrt{a_{0}}=0.9 \\
& \text { Conditions for con } \quad \cos \theta=-\frac{0.64}{2 \times 0.9} \Rightarrow \theta=110.8^{\circ} \\
& \begin{array}{l}
\text { Conditions for complex root: } \\
\text { Roots are complex valuedwhen } A \text { is.real and } \mid \cos \\
\text { Hence } a_{0}>0 \text { and }\left|\frac{a_{1}}{2 \sqrt{a_{0}}}\right|<1 \text { ide }\left|a_{1}\right|<2 \sqrt{a_{0}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { SIGEx } 11 \text { prepQ4 addendarm: P-Z in Laplace } \\
& \text { This addenderm is the proof for } p_{2}=p_{1}^{*} \text { when } a_{0} \text { and } a_{1} \\
& \text { are real valued. } \\
& \text { Equating coefficients we have } \\
& -\left(p_{1}+p_{2}\right)=a_{1} \quad p_{1} p_{2}=a_{0} \\
& \text { We assume that the conditions for complex roots } \\
& \text { are satisfied. } \\
& \text { Let } p_{1}=A_{1} e^{j \theta_{1}} \quad p_{2}=A_{2} e^{j \theta_{2}} \\
& \Rightarrow p_{1} p_{2}=A_{1} A_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}=a_{0} \\
& \text { Since } a_{0} \text { is real, } \theta_{1}+\theta_{2}=0 \Rightarrow \theta_{2}=-\theta_{1} \\
& \text { We now hour that } A_{2}=A_{1} \text { : } \\
& -\left(p_{1}+p_{2}\right)=-\left(A_{1} e^{j \theta_{1}}+A_{2} e^{-j \theta_{1}}\right)=a_{1} \\
& \text { Since } a \text {, is real, } \\
& \operatorname{Im}\left(p_{1}+p_{2}\right)=0 \text {, ide. } A_{1} \sin \theta_{1}+A_{2} \sin \left(-\theta_{1}\right)=0 \\
& \Rightarrow A_{1}-A_{2}=0 \Rightarrow A_{2}=A_{1} \quad\left[\sin \theta_{1} \neq 0\right] \\
& \text { Hence } p_{2}=p_{1}^{*}
\end{aligned}
$$

Question 5

Express the complex points p_{1} and p_{2} from equation 2 above as the non-exponential complex form of $a+i b$, that is, with a real and imaginary part.

SIGE x Solutions $\quad F-z$ in Laplace domain

Question 5

Express the complex points p_{1} and p_{2} from equation 2 above as the non-exponential complex form of $a+i b$, that is, with a real and imaginary part.

From Q4: Q4 $0.9 \cos \left(110.8^{\circ}\right) \pm j 0.9 \sin \left(110.8^{\circ}\right)=-0.320 \pm j 0.8412$ From quadratic: $-\left(\frac{a_{1}}{2}\right) \pm j \sqrt{a_{0}-\left(\frac{a}{2}\right)^{2}}{ }^{2}$

d) Question 6

Next, we look at a graphical approach for evaluating the factors $\left(s-p_{1}\right)$ and ($s-p_{2}$). Place crosses (" x ") on a complex plane at the locations corresponding to p_{1} and p_{2}, as obtained in (c) above. Place a dot at the point 1.2 on the jaxis, i.e., the complex value $j \omega=j 1.2$. Join this point and the crosses at p_{1} and p_{2} with straight lines. Satisfy yourself that the lengths of these joining lines are $\left|j \omega-p_{1}\right|$ and $\left|j \omega-p_{2}\right|$. Noting that $1 /|H(j \omega)|$ is the product of these two magnitudes, estimate $|H(j 1.2)|$.

$$
|H(j 1.2)|=\frac{1}{0.5 \times 2}
$$

$$
\doteq 1
$$

Graph 2: vector subtraction

Question 6
Next, we look at a graphical approach for evaluating the factors $\left(s-p_{1}\right)$ and $\left(s-p_{2}\right)$. Place crosses ("x") on a complex plane at the locations corresponding to p_{1} and p_{2}, as obtained in (c)
above. Place a dot at the point 1.2 on the j axis, i.e., the complex value $\mathrm{j} \omega=\mathrm{j} 1.2$. Join this point and the crosses at p_{1} and p_{2} with straight lines. Satisfy yourself that the lengths of these joining lines are $\left|j \omega-p_{1}\right|$ and $\left|j \omega-p_{2}\right|$. Noting that $1 /|H(j \omega)|$ is the product of these two magnitudes, estimate $|H(j 1.2)|$.

Question 7

Use the idea above to obtain estimates of $|\mathrm{H}|$ at other frequencies and thus produce a sketch graph of $|\mathrm{H}|$ over the range 0 to $5 \mathrm{radian} / \mathrm{s}$. (ie: ω will range from 0 to 5). Notice that the presence of a peak in the response is obvious from the behaviour of the vector from p1 as the dot on the j axis is moved near p1. Note that this vector has much greater influence than the other vector, especially near the peak. Compare this estimate with the computed result you obtained in (b). Plot at least 4 points over this range, choosing your points to reflect the important characteristics of this response.

Explain why the vector from p1 has a greater influence on the peak of the response.

Re Question 7:

The procedure is the same as in Q6. The main purpose of the exercise is to demonstrate how the general shape of the response can be estimated intuitively from the position of the poles in the the s plane. A secondary aspect is to compare the outcome with the exact result in Q3.

The reason why the pole in the lower half plane usually has less influence is because the rate of change of its contribution is relatively small as the position of the frequency point on the j axis moves closer to the upper half plane pole.

Question 8

The roots p_{1} and p_{2} of the denominator polynomial of $H(s)$, marked as crosses on a plane of the complex variable s are known as poles of $\mathrm{H}(\mathrm{s})$. Note that in the example case, p_{2} is the complex conjugate of p_{1}. Why is this so?

Question 9

Derive Eqn1 from the schematic (block) diagram, Figure 1, without using the differential equation step. That is, treat the integrator as a "gain" of value $1 / \mathrm{s}$ and process the equations as algebra.

$$
\begin{aligned}
& \text { SIGEx } 11 \text { prep solutions: Q9-11 } \\
& \begin{array}{l}
\text { Q9 Solution } \\
x_{1}=s x_{0}
\end{array} \\
& x_{2}=s x_{1} \\
& x_{2}=\mu-a_{1} x_{1}-a_{0} x_{0} \\
& \Rightarrow s^{2} x_{0}+a_{1} s x_{0}+a_{0} x_{0}=\mu \\
& \Rightarrow \quad x_{0}=u /\left(s^{2}+a_{1} s+a_{0}\right) \\
& y=b_{2} x_{2}+b_{1} x_{1}+b_{0} x_{0} \\
& =b_{2} s^{2} x_{0}+b_{1} s x_{0}+b_{0} x_{0} \\
& =x_{0}\left(l_{2} s^{2}+b_{1} s+b_{0}\right) \\
& \Rightarrow \frac{y}{u}=\left(b_{2} s^{2}+b_{1} s+b_{0}\right) /\left(s^{2}+b_{1} s+b_{0}\right) \\
& \text { With } b_{0}=2, b_{1}=0, b_{2}=1 \\
& \text { numerator }=s^{2}+2 \\
& \Rightarrow \text { roots } z_{1}=j 1.414 \quad z_{2}=-j 1.414 .
\end{aligned}
$$

Q II Solution

Question 10

Next we proceed to the system in Fig 2. Note that this is a simple extension of the feedback only system in Fig. 1. Use Eqn 1 to obtain the output/input equation y / u,

$$
y / u=H _y(s)=\left(b_{2} \cdot s^{2}+b_{1} \cdot s+b_{0}\right) /\left(s^{2}+a_{1} \cdot s+a_{0}\right) \quad \text { Eqn3 }
$$

(i) Consider the case $b_{0}=2.0, b_{1}=0, b_{2}=1.0$. Show that the roots of the numerator for these coefficients are $z_{1}=0+j 1.414, z_{2}=0-j 1.414$. Place an " 0 " on these points on the same s plane diagram you used to mark the poles, Graph 2. The roots of the numerator are known as "zeros".

Figure 2: schematic of 2nd order integrator feedback structure with feedforward combiner.

Question 11

Using the zeros with the method from Question 6, carry out the graphical estimation of the numerator of Eqn 3 at $s=j 1.2$. Note that this is a special case, with the zeros located on the j axis (since $b_{1}=0$). Hence, the lines joining the point $j w$ and the zeros will lie on the j axis. Combine the numerator and denominator estimates to obtain $\left|H _y(j 2)\right|$. Extend to other values of w, and sketch the magnitude response $\left|H _y(j \omega)\right|$. Comment on the presence of a null at $\omega=$ 1.414 .

Question 12

(optional) Compute $\left|\mathrm{H} _y(\mathrm{j} \omega)\right|$ from Eqn 3 and assess the quality of the estimate based on poles and zeros.

Question 13

With a_{0} and a_{1} as in Question 3, apply the pole-zero method to obtain approximate graphs of the magnitude response for the following cases:

$$
\begin{aligned}
& b_{1}=1, b_{0}=b_{2}=0 \\
& b_{2}=1, b_{0}=b_{1}=0 \\
& b_{2}=1, b_{1}=-a_{1}, b_{0}=a_{0} \\
& b_{2}=1, b_{1}=0, b_{0}=a_{0}
\end{aligned}
$$

State the name of the response type corresponding to each case (e.g., bandstop, allpass, etc). For the allpass case, plot the phase and/or group delay response (group delay = $-\mathrm{d}($ phase) $/ \mathrm{d} \omega$). Find out and note here an application for the allpass response.

$$
\begin{array}{ll}
b_{1}=1, b_{0}=b_{2}=0 & \Rightarrow \text { Bandpass (zero at } s=0 \text {) } \\
b_{2}=1, b_{0}=b_{1}=0 & \Rightarrow \text { Highpass (double zero at } s=0 \text {) } \\
b_{2}=1, b_{1}=-a_{1}, b_{0}=a_{0} & \Rightarrow \text { Allpass (mirror zeros in RHP) } \\
b_{2}=1, b_{1}=0, b_{0}=a_{0} & \Rightarrow \text { Notch (zeros on j-axis opposite poles) }
\end{array}
$$

SIGEx II Solutions
P.Z in Laplace domain

Prep Q13: Group delay for allpass case The biquad allpass transfer function has two poles and two zeros in
conjugate pairs. The zeros are
symmetrically apposite the poles in
 without affecting the to modify phase responses group delay is an alternative approach to represent phase response. It is defined as

$$
\tau(\omega)=-\frac{d}{d_{c \omega}}(x H(j \omega))
$$

The overall phase response is

$$
\Varangle H(j \omega)=\Varangle \text { numerator }-\chi \text { denominator. }
$$

$$
\text { with } \frac{x}{x} \text { denominator }=x\left(j \omega-p_{1}\right)+z\left(j \omega-p_{1}^{*}\right)
$$

$$
\text { and } X \text { numerator }=\Sigma\left(j \omega-p_{1}\right)+z\left(j \omega-p_{1}^{*}\right)
$$

$$
\begin{aligned}
& \text { Each of these four contributions has the sere form, } \\
& \text { hence we will derive the ground, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { hence we will derive the group delay } \\
& \text { corresponding to } x \text { lw }
\end{aligned}
$$

$$
\begin{aligned}
& \text { corresponding to } \chi\left(j \omega-p_{1}\right) \text { and we se the result to } \\
& \text { obtain the other three. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { An interesting outcome is that unlike the phase } \\
& \text { response. th }
\end{aligned}
$$

$$
\begin{aligned}
& \text { response, the group delay expression is algebraic, } \\
& \text { it does not have inge }
\end{aligned}
$$

it does not have inverse trig functions.

STGE $x 11$ SoLutions $p-z$ in Laplace domain
PrepQ/3: Group delay etd (p2/2)
Group delay contribution of factor (jj- p_{1})
From the s plane phasor diagram we have

$$
p_{1}=\alpha+j \beta \Rightarrow \tan \theta(\omega)=\frac{\omega-\beta}{\alpha}
$$

$$
\text { where } \theta(\omega) \text { is } X\left(j \omega-p_{1}\right) \quad\left[N B!\text { different to } \theta \text { in } Q_{4}\right]
$$

Differentiate both siokes:
$\angle H S: \frac{d}{d \omega}(\tan \theta(\omega))=\left(\sec ^{2} \theta\right) \cdot \frac{d \theta}{d \omega}=\left(1+\tan ^{2} \theta\right) \frac{d \theta}{d \omega}$
RHS: $\frac{d}{d \omega}\left(\frac{\omega-\beta}{\alpha}\right)=\frac{1}{\alpha}$
Hence $\tau_{\phi_{1}}(\omega)=-\frac{d \theta}{d \omega}=\frac{-(1 / \alpha)}{1+\left(\frac{\omega-\beta}{\alpha}\right)^{2}}=\frac{-\alpha}{\alpha^{2}+(\omega-\beta)^{2}}$
and $\tau_{p_{1}^{*}}(\omega)=\frac{-\alpha}{\alpha^{2}+(\omega+\beta)^{2}}$
$\tau_{\text {pols }}(\omega)=\tau_{p_{1}}+\tau_{p_{1}^{*}}=\frac{1 \alpha)}{\alpha^{2}+(\omega-\beta)^{2}}+\frac{(-\alpha)}{\alpha^{2}+(\omega+\beta)^{2}}$
(From Wotham Alpha)

$$
=\frac{-2 \alpha F}{(F-2 \beta \omega)(F+2 \beta \omega)}=\frac{-2 \alpha F}{F^{2}-(2 \beta \omega)^{2}}
$$

$$
\begin{array}{r}
\text { where } F=\alpha^{2}+\beta^{2}+\omega^{2}=a_{0}+\omega^{2} \quad \text { (since pole magnituole }{ }^{2} \\
=\alpha^{2}+\beta^{2}
\end{array}
$$

It is readily shown that $\quad \begin{aligned} & =\alpha^{2}+\beta^{2} \\ & \left.=a_{0}\right)\end{aligned}$

$$
\tau_{z_{\text {enos }}}(\omega)=-\tau_{p o l e s}(\omega)
$$

Hence

$$
\tau(\omega)=\tau_{\text {zeros }}-\tau_{\text {poles }}=\frac{-4 \alpha\left(a_{0}+\omega^{2}\right)}{\left(a_{0}+\omega^{2}\right)^{2}-(2 \beta \omega)^{2}}
$$

N.B. In the above expression $\alpha<0$ (since $a_{1}>0$).

$$
\begin{aligned}
& \text { Formules for } \alpha \text { and } \beta \text { in terms of coefficients } a_{0} \text { and } a_{1} \text {, } \\
& \text { are given in the solution of QS }
\end{aligned}
$$

$b_{2}=1, b_{1}=-a_{1}, b_{0}=a_{0} \quad \Rightarrow$ Allpass (mirror zeros in RHP)

$($ group delay $=-\mathrm{d}($ phase $) / \mathrm{d} \omega)$.

$b_{1}=1, b_{0}=b_{2}=0 \quad \Rightarrow$ Bandpass (zero at $s=0$)

$$
b_{2}=1, b_{0}=b_{1}=0 \quad \Rightarrow \text { Highpass (double zero at } s=0 \text {) }
$$

$$
b_{2}=1, b_{1}=0, b_{0}=a_{0} \quad \Rightarrow \text { Notch (zeros on } j \text {-axis opposite poles) }
$$

Question 14

The integrators in Figs 1 and 2 were depicted as having unity gain. A practical realization normally has an associated gain constant. The corresponding integrator equations have the form

$$
\begin{aligned}
& x_{0}=\mathrm{k} \cdot \int\left(x_{1}\right) \mathrm{d} t \\
& x_{1}=\mathrm{k} \cdot \int\left(x_{2}\right) \mathrm{d} t
\end{aligned}
$$

Note that k is not dimensionless. Its unit is sec^{-1}. The SIGEX INTEGRATOR modules provide a choice of four values of k, selectable by means of on-board switches. The switches are labelled "INTEGRATION RATE" and the selection and associated value is displayed on the SIGEx SFP. Suppose $k=12,500 \mathrm{sec}^{-1}$ is selected. Modify the frequency scale for the response in (b) above to reflect this choice of k. Explain your reasoning here.

```
SIGEx I/ prep solutions: Q14
    Proceed as in Q9 with s/k replacing s
    The new equations
        \(x_{1}=(s / k) x_{0}\)
        \(x_{2}=(5 / k) x_{1}\)
    \(\Rightarrow\left(\frac{x_{0}}{u}\right)=H(s)=1 /\left((s / k)^{2}+a_{1}(s / k)+a_{0}\right)\)
    With \(s=j \omega|H(j \omega)|=\left|1 /\left(\left(j \frac{\omega}{k}\right)^{2}+a_{1}\left(j \frac{\omega}{k}\right)+a_{0}\right)\right|\)
    From this we see that the introduction of the
    intequator gain \(k\) leads to a change in the
    frequency scale. An easy way to understand
    The magnituole response in Graph । (Q3)
    Corresponds to \(k=1\) and has its perk at \(\omega=0.8 \mathrm{rad} / \mathrm{sec}\)
    When \(k=12,500 \sec ^{-1}\) the frequency of the peak is
        \(0.8 \times 12,500=10,000 \mathrm{rad} / \mathrm{sec}\).
        Hence, the integrator gain constant \(k\) upscales the
        frequency axis by a factor of te, ie. 12,500 in
this instance.
```


Question 15

Measure and plot the gain frequency response at the output of the second integrator (x_{0}) onto Graph 5. Confirm that this is a lowpass response similar to the theoretical predictions you obtained in prep item (Q3) (the rescaling of the frequency axis will be calculated next). Note the -3 dB cut-off frequency and the frequency at which the response drops to -30 dB . Measure the overshoot (if any) and note the frequency of the peak.

DC gain=1.25; F-3db=2.67kHz; f-30db=3.75dB; fpk=1.6kHz @ +3dB

Question 16

Calculate the integration rate as (rise $(V) / r u n(s))$ / input voltage (V). The units for integration rate are $\sec ^{-1}$. Repeat your measurement for a falling ramp and confirm that the magnitudes are equal. Compute rates for all 4 switch positions in case you need this information later on.
@1kHz.....UP/UP: 6.3V/0.5ms/1 = 12600; UP/DOWN: 9.6V/0.5ms=19200

DOWN/UP: 16V/0.5ms = 32000; DOWN/DOWN: 21/0.05ms=420,000 @ 10kHz

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 1: poles and magnitude response

Question 17

Measure the frequency of the response peak, the 3 dB frequencies, and hence, the 3 dB bandwidth.

Fpk $=1.8 \mathrm{kHz}$ @ 1.5 V
$\mathrm{f}-3 \mathrm{db}=1.5 \times 0.707=1.06 \mathrm{~V} ; \underbrace{f @ 1.06 \mathrm{~V}=1.28 \mathrm{khz}} \& 2.74 \mathrm{kHz} \mathrm{BW}=1.46 \mathrm{kHz}$

Question 18

Calculate the geometric and arithmetic means of the 3 dB frequencies. Compare this with the peak frequency. Consider which of these gives the closer agreement. This is not easy to resolve as the peak is quite flat, and pinpointing it can be challenging. It turns out that for this type of second-order system the peak is at the geometric mean of the 3 dB frequencies (see Tut Q.2). Since these can be measured more accurately, this provides a better alternative for measuring the resonance frequency. From Tut Q. 2 it is readily shown that this formula is not restricted to a 3 dB bandwidth criterion. You may like to put this to the test, e.g. for the 6dB frequencies.

Arithmetic mean $=(1.28 \mathrm{k}+2.74 \mathrm{k}) / 2=2.01 \mathrm{kHz}$

Geometric mean $=\operatorname{sqrt}(1.28 \mathrm{k} \times 2.74 \mathrm{k})=1.87 \mathrm{kHz}$

Question 19

In Tut Q. 2 it is shown that the bandpass response peak is at ($\left.\sqrt{ } a_{0}\right) \mathrm{rad} / \mathrm{sec}$. Using this formula and measurement results obtain an alternative estimate of the scaling factor, and compare this with the results of the integrator gain measurements in T1.3. Consider which of these is the more reliable.
Record these results for use in Tut Q.2.
Fpk=1.6k $=0.9 / 2$ pi \times IG...........hence, $I G=11,170$
$11,170 / 12600=\ldots .12 \%$ difference...measurement errors ?

Question 20

Consider practical uses of these properties and record your comments.
Convenient for tuneable digital filters
For fine tuning responses

$$
a_{1}=-0.64 \quad \therefore \sigma_{1}=a_{1} / 2=-0.32
$$

Wher $a_{0}=-0.81, r=0.9$

$$
\begin{aligned}
& a_{0}=-0.91, r=.954 \Rightarrow r \uparrow, \sigma \text { const. } \therefore f_{p k} \uparrow \\
& a_{0}=-0.7, r=.836 \Rightarrow r \downarrow, \sigma \text { const } \therefore f_{p k} \downarrow
\end{aligned}
$$

wher $a_{0}=-0.81, r=0.9$, as $a_{1} \uparrow$, les peak gain

$$
\text { ", as } a_{1} \downarrow \text {, more peak gain }
$$

Question 21

Record your value of a_{1} here as you will need it later.
$a_{1}=-0.4$, gives several cycles as per Fig 7, (other values are equally valid)

Question 22

Record your observations.
As a_{1} tends to 0 , decay rate reduces, and ringing continues for longer

Question 23

Record your findings.

At $a_{1}=+0.03$, oscillations are self sustaining, without input.
Fosc $=2.75 \times 0.2 \mathrm{~ms}=1.81 \mathrm{kHz} @+/-1.4 \mathrm{Vpk}$ ie: gains are $-0.81,+0.03,1.0$

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 3: pole locus with varying a1 coefficient

Question 24

Return to the setup in Fig. 3 and with a_{0} back to the same position as in step 18, recorded in Q21, measure the resonance frequency at point $x 1$ (the bandpass filter output). Compare this result with the time domain frequency measurements of the impulse response oscillations.

The frequencies are the same. The impulse reponse shows us the resonant frequency of the
system.

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 8: response

Question 25

Decrease bo progressively and observe that this causes a reduction of the gain at low frequencies. Continue until the gains at low and high frequencies are close to equal. You may wish to use the manual GAIN ADJUST knob on the SIGEx board to vary this parameter. Remember to setup its range to suit your parameter.
Check that the null is still present. This realizes a bandstop filter, also known as a "notch" filter. Measure b_{0} (and a_{0} in case it was altered). Verify that b_{2} is still set to unity.

Varying b0 causes gain reduction at low freq.

Equality occurs at $b 0=0.8$. fnull $=1.8 \mathrm{khz}$

Question 26

Show that this response is obtained when $b_{0}=a_{0}$ (with $b_{2}=1$). This can be done quickly using Eqn 3 in prep Question 9: at low frequency, substitute $s=0$; at high frequency use $1 / s=0$.

Refer to Q9

Question 27

From prep Question 11 we expect the deepest notch when b_{1} is zero. Examine whether this is the case in your implementation. Vary b_{1} above and below zero and find the value that gives the deepest notch. Suggest why there may be a discrepancy between theory and practice. Check the integrator gain by comparing theoretical and measured values of the null frequency. Consider possible practical causes for any discrepancies.
b1=0 gives deepest notch
Theory \& practice very close

Question 28

Select a different integrator constant: suggested dip switch position DOWN UP (i.e k around $29,000 / s$) and measure the new null frequency.

Fnull measured as 4.66 kHz

Calculated new fnull by scaling of integration rate $=1.8 \mathrm{k} \times(32000 / 12600)=4.57 \mathrm{k}$

Question 29

Measure and plot the phase shift vs frequency and, again compare with your expectations from the pole-zero plot, on Graph 9.

SIGEx Lab Manual Vol. 1 : Instructors Manual.

1 vpk in

Question 30

Record the values of a_{0} and a_{1} that realize this outcome. This response is known as maximally flat. In Tut Q. 8 you are invited to show that the formula for a maximally flat second order allpole is $a_{1}=\int\left(2 . a_{0}\right)$.
$a 1=-1.3$ looks satisfactory, though other similar values do as well.

Question 31

Record the values of a_{0} and a_{1} that realize this outcome. This response is known as critically damped. It is of interest in control systems as it realizes the most rapid risetime without overshoot. This idea also finds application in the context of Gaussian filters. Further exploration of critical damping is provided in Tut. Q.9.

A1= -1.54 gives a well damped response

Experiment 12 - Sampling and Aliasing

Pre-requisite work

Question 1

Look up or derive the trigonometric identity for the product of two sines expressed as a sum. Confirm that the frequencies in this sum are $(f 1+f 2)$ and $|f 1-f 2|$, where $f 1$ and $f 2$ are the input frequencies. Confirm that the output components are of equal magnitudes.

```
sin}a\cdot\operatorname{sin}b=\frac{1}{2}(\operatorname{cos}(a-b)-\operatorname{cos}(a+b)
```


Question 2

Look up or derive the Fourier series of a squarewave (with no DC component) of duty ratio other than 50% (25% and 1% say). Note the $\sin x / x$ shaped spectrum envelope. Locate the frequency of the first null of the envelope for each case and note the relationship with the pulse width.

Now consider the 50\% duty ratio case. Comment on the disappearance of the even harmonics.
$50 \%: f(t)=4 / \pi[1 \cdot \sin (w t)+1 / 3 \cdot \sin (3 w t)+1 / 5 \cdot \sin (5 w t)+\ldots]$ for odd quarter-wave symmetry, $A=1$

Question 3

Derive the spectrum of the product of a sinewave and a 1% duty ratio squarewave. You can do this easily by using superposition with the results in Question 1 and Question 2. For convenience, make the frequency of the squarewave around five times the sinewave frequency. Plot the resulting spectrum.

Question 4

Repeat this for a few other sampling rates, from 2000 Hz , down to 400 Hz , say. Document your readings in Table 1 below. From these observations, what is the minimum sampling rate you consider adequate to allow recovery of the analog signal without too much distortion, on the basis of this sampling format (i.e. using the SAMPLE/HOLD function).

Recovery is getting sensitive and difficult to achieve around 400 Hz

Sample rate (Hz)	TLPF setting (approx.position)	Recovered amplitude (V)
2000	9 o'clk $^{\prime}$	1.7 V
1000	$8.30 o^{\prime} \mathrm{clk}$	1.7 V

800	$8: 15$ o $^{\prime} \mathrm{clk}$	1.7 V
400	8 o'clk $^{\prime}$	1.7 V

Table 1: sample rate readings for recovery from S/H

Question 5

Repeat the procedures in step 15 for recovery using the TUNEABLE LPF using the sample train generated with the system in Fig 2, i.e. with narrow pulses. Document your readings in Table 1 below. Compare the outcome with those obtained with the S/Hold method. Do you expect one of these sample formats to be better for interpolation to analog form? Is this borne out by your results?

S/H should be better, due to less transitions

No. Isolating the fundamental is the only issue.

Table 2: sample rate readings for sampled pulse train recovery

Sample rate (Hz)	TLPF setting (approx.position)	Recovered amplitude (V)
2000	$90^{\prime} \mathrm{clk}$	1 V
1000	$8.30 o^{\prime} \mathrm{clk}$	1 V
800	$8: 15 o^{\prime} c l k$	1 V
400	$8 o^{\prime} c l k$	1 V

Question 6

Examine the step and impulse responses of the filter at the settings that give you the best outcomes. Measure risetime and related properties and compare with the sample interval. ${ }^{1}$ Use the PULSE GENERATOR module set to 10 Hz , and various DUTY CYCLES settings to achieve this easily.

Risetime=5ms; ringing @ 100Hz
Width of impulse $=10 \mathrm{~ms}$

Question 7

For the same settings as in step 17, carry out a quick examination of the frequency response of the filter. Obtain and record the 3 dB cut-off frequency, and the attenuation of the stop-band.
$D C=3.5$, hence $-3 \mathrm{db}=2.47 \mathrm{~V}$

[^0]SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 1: alias waveforms

Question 8

Explain why the sampled signal spectrum looks the way it does and specifically relate this to your understanding of pre-lab preparation item $1 \& 2$.

By superposition and sums/differences, each sampling signal harmonic has upper \& lower sidebands of the sampled signal.

Question 9

Note the frequency of the first and second nulls in the spectrum and explain why they are at those frequencies.

Fnull $=n * 1 /$ pulse width $=n * 4 \mathrm{kHz}$

Question 10

At what sampling rate does the lower sideband of the first spectrum image become located at the same frequency as the input sinewave?

200

Question 11

You should be able to recover a clean sinewave. What is its frequency? Where does it come from?

50 Hz . It is a created "alias" or "image" component

Question 12

Why is it not possible to recover the analog input when the number of samples per cycle of the input sinewave is less than two?

Less than 2 samples per cycle causes false frequency components to be created.

Question 13

What is the minimum sampling rate that allows a filter to be able to recover the original sinewave signal without any other unwanted components?

Slightly more than two times the signal frequency, due to filter not being a perfect "brickwall"
as required by theory.

Experiment 13 - Getting started with analog-digital conversion

Question 1

Show that $n=\log _{2}(L)$:
An ' n ' bit frame represents $2^{n}(=L)$ possible states, hence $n=\log _{2} L$

Question 2

Record the number of clock periods per frame.

8

Question 3

Currently the analog input signal is zero volts (since INPUT is grounded). Before checking with the scope, consider what the PCM encoded output might look like. Can you assume that it will be 00000000? What else might it be, bearing in mind that this PCM ENCODER outputs offset binary format.
$10000000=0 V$

Question 4

On CH1 display the signal at PCM DATA output. The display should be similar to that in Figure 3 (possibly with fewer frames). Is it in agreement with your expectations?

FS:00000001

DATA: 01111110, out by 2 bits. Reason: PCM encoder is not calibrated to OV

Question 5

Adjust VARIABLE DC to its maximum negative value. Record the DC voltage and the pattern of the 8-bit binary number.
$-2.5 V=00000000$

Question 6

Slowly increase the amplitude of the DC input signal until there is a sudden change to the PCM output signal format. Record the format of the new digital word, and the input DC voltage at which the change occurred. Use the INCREMENT arrows on the digital value entry box for a steady stable increase in DC value.
$-2.44=00000001$

Table 1: DC VOLTAGE input vs. PCM codewords

DC VOLTAGE (V)	8 bit PCM codeword
-2.5	00000000
-2.44	00000001
-1.54	00101111
-0.58	01100000
+0.16	10000110
+0.89	10101011
+1.75	11010111
+2.49	11111101
+2.5	11111110

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Graph 1:DC to binary word plot

Question 7

On the basis of your observations so far, provide answers to the following:

* what is the sampling rate?
* what is the frame width?
* what is the width of a data bit?
* what is the width of a data word?
* how many quantizing levels are there?
* are the quantizing levels uniformly (linearly) spaced?
* what is the the minimum quantized level spacing? How does this compare to theory?

Fs $=10 \mathrm{k} / 8=1.25 \mathrm{ksamples} / \mathrm{sec}$
8 bit; Tbit $=1 / 10,000 \mathrm{sec} ;$ Tword $=1 / 10,000 * 8 \mathrm{sec} ; 256$ levels; Yes

Measured quantizing levels: $2.5-2.32$ for 7 levels $=0.18 \mathrm{~V} / 7=0.24 \mathrm{~V} /$ level
Theory: $5 \mathrm{~V} / 256=0.02 \mathrm{~V} /$ level
\qquad

Question 8

The relationship between the sampled input voltage and the output codeword has been described above. Suggest some variations of this relationship that could be useful?

Compressing certain regions of the scale can be useful to increase/decrease resolution
in those regions eg: companding.

Question 9

Adjust the scope to display this waveform. Record its shape and frequency. Check whether this conforms with the Nyquist criterion. Show your reasoning.

100 Hz sine, 2 V pk. Min sampling rate $=200 \mathrm{~Hz}$
Fsampling $=10 \mathrm{k} / 8=1.25 \mathrm{kHz} \gg 200 \mathrm{~Hz}$

Question 10

Momentarily, vary the clock rate from 10,000 to $20,000 \mathrm{~Hz}$. How does this affect the "sampling distortion" viewable in the output signal?

The quantization reduces.

Question 11

View the input to the TUNEABLE LPF, ie the output of the PCM DECODER and compare with the INPUT sinusoid. What is the gain of the PCM DECODER itself.

Question 12

Can you explain the source of the delay between input and output signals? Both with and without the TUNEABLE LPF?

PCM data frame transmission time, PCM data frame reception time, and analog filter delay.

Question 13

Momentarily, vary the clock rate from 10,000 to $20,000 \mathrm{~Hz}$. How does this affect the required Fc needed to recover the signal without distortion?

Higher Fc is adequate for the 20k case, due to the sampling images being further apart.

Experiment 14 - Discrete-time structures:

Preparation

This preparation provides essential theory needed for the lab work to make sense.

Question 1

Consider the system in Figure 1, where $n T$ are the discrete-time points, with T sec denoting the unit time delay, i.e. the time between samples. Show that the difference equation relating the output $y(n T)$ and the input $u(n T)$ is

$$
\begin{equation*}
y(n T)=b_{0} \cdot u[n T]+b_{1} \cdot u[(n-1) T]+b_{2} \cdot u[(n-2) T] \tag{Eqn1}
\end{equation*}
$$

Show by substitution that $e^{j n T \omega}$ is a solution, i.e. show that when the input is $e^{j n T \omega}, y(n T)$ is $e^{j n T w}$ multiplied by a constant (complex-valued); ω is the frequency of the input in radians/sec.

Figure 1: schematic of FIR filter with two unit delays
In Lab 11 we used a complex exponential input to represent the behaviour of a system that is supposed to operate with real-valued signals. You could consider using $u[n T]=\cos (n T \omega)$ or $\sin (n T \omega)$ instead. However, the use of the exponential function simplifies the math considerably. We have already seen that $\cos (\omega t)$ is $\operatorname{Re}\{\exp (j \omega t)\}$, so, you can carry out the analysis with $e^{\text {jnTw }}$, then simply take the real part of the result. After a while, working with complex exponential functions to represent sinusoids becomes second nature and we don't even bother thinking about taking the real part. Many practical systems implemented digitally actually operate with complex-valued signals, for example modulators and demodulators working with quadrature signals.

From the above, with input $u(n T)=e^{j n T w}$, show that

$$
\begin{equation*}
H=y / u=b_{0}+b_{1} \cdot e^{-j T \omega}+b_{2} \cdot e^{-j 2 T \omega} \tag{Eqn2}
\end{equation*}
$$

Note that H is not a function of n.

Question 2

Use this result to obtain a general expression for the magnitude of y / u as a function of w. You will need to first write down the real and imaginary parts.

Set $T=1 \mathrm{sec}$ for the time being, and plot the result for the case $b_{0}=1, b_{1}=-1.3$, $\mathrm{b}_{2}=0.9025$ over the range $\omega=0$ to $2 . \pi \mathrm{rad} / \mathrm{sec}$. Label the frequency axis in Hz as well as $\mathrm{rad} / \mathrm{sec}$. You should find there is a significant dip in the response near 0.13 Hz .

Question 3

As in Lab 7, we consider an alternative way of getting frequency responses. We will create a graphical medium to provide an intuitive environment for visualizing and generating both magnitude and phase responses.

First, return to the expression for y / u obtained in (a) and replace " $\exp (j T \omega)$ " by the symbol " z ". Look upon z merely as a convenient macro for $\exp (j T \omega)$. At this point there is no need to ascribe any deeper significance to this substitution. The result is the (complex-valued) polynomial

$$
\begin{equation*}
y / u=H(z)=b_{0}+b_{1} \cdot z^{-1}+b_{2} \cdot z^{-2}=z^{-2} \cdot\left[b_{0} \cdot z^{2}+b_{1} \cdot z+b_{2}\right] \tag{Eqn3}
\end{equation*}
$$

For the case $b_{0}=1, b_{1}=-1.3, b_{2}=0.9025$ (from (Q2)), express the quadratic in the brackets in the factored form $\left(z-z_{1}\right)\left(z-z_{2}\right)$, where z_{1} and z_{2} are the roots. Show that these are given by

$$
\begin{align*}
& z_{1}=0.95 e^{j 0.260 \pi} \\
& z_{2}=0.95 e^{-j 0.260 \pi} \tag{Eqn4}
\end{align*}
$$

Satisfy yourself that the magnitude response of H can be expressed as

$$
\begin{equation*}
|H(\omega)|=\left|\left(e^{j \top \omega}-z_{1}\right)\right| \cdot\left|\left(e^{j \top \omega}-z_{2}\right)\right| \tag{Eqn5}
\end{equation*}
$$

Write down the corresponding expression for the phase of H.

Question 4: Graphical plotting of poles \& zeros

We are now ready to proceed with a graphical approach for evaluating the factors ($z-z_{1}$) and ($z-z_{2}$) in Eqn 3. Place an "0" on a complex plane (we will refer to this as the z plane) at the locations corresponding to z_{1} and z_{2}, as obtained in Eqn 4. With $T=1$, we will get an estimate of $|H|$ at $\omega=\pi / 5$.

Place a dot at the point $e^{j \pi / 6 . ~ J o i n ~ t h i s ~ p o i n t ~ a n d ~ t h e ~ p o i n t ~} z 1$ with a straight line. The length of this line is $\left|\left(e^{j \pi / 5}-z_{1}\right)\right|$.
Do the same with z_{2} to obtain $\left|\left(e^{j \pi / 5}-z_{2}\right)\right|$. From Eqn 5, the desired estimate of $|H(\pi / 5)|$ is simply the product of the lengths of these two lines.

Question 5

By repeating this for other values of ω we are able to get a quick estimate of the graph of $|H|$ versus ω. It's important to note that the locus of $e^{j T \omega}$ is a circle of unity radius centered at the origin (known as the unit circle). Hence, the general shape of the frequency response is easily estimated by simply running a point counter-clockwise along the circumference of the unit circle, starting at $(1,0)$. Note that the idea is just a variant on the procedure introduced in Lab 11, where we moved the frequency point along the j axis. Compare the outcome with the result computed in (Q2).

Notice that the presence of the trough in the response can be seen at a glance from the behaviour of the vector from the "zero" z_{1} as the dot on the unit circle is moved near z_{1}. By comparison, the rate of change of the other vector is small over that range.

Question 6

Modify Fig 1 by replacing the unit delays with a gain of $1 / z$ and show that Eqn 3 follows by inspection using simple algebra, without the need to work through the difference equation step. While this is only a minor simplification in this example, it is very useful in more complicated cases, especially where feedback loops are involved.

Although z was originally introduced in (Q3) as just a substitution for $e^{j T \omega}$, our interpretation appears to have been extended in (Q4) to include any complex number. Consider whether this is the case, and why.

Question 7

In the above example, we had the sample interval $T=1$. Suppose $T=125$ microsec. Adjust the frequency axis for this value of T. Extend this result for any value of T. How are the zeros of $H(z)$ affected by the value of T ? Why is it appropriate to use $T=1$ normally?

Show that $|H(\omega)|$ is periodic, and determine the period in Hz .

Graph 1:response plot

Question 8

Measure the notch frequency and the depth relative to the response at DC. Also measure the time delay as a function of frequency at several points of interest.

Question 9

Determine and note the new notch frequency, for the b_{1} gain entered. Document the relationship between b_{1} and notch frequency

Question 10

What is the level of attenuation of the f 2 signal for the original zero positions.
F1: 2 V in, 0.2 V out pk
F2: 2V in, 1V out pk ... using FFT display

Question 11

From your previous findings in this experiment, what change is required to gain b1 to reduce the notch frequency?

As b1 is reduced toward -2 , fnotch reduces

Question 12

What is the equation relating theta of the zero to the frequency of the zero, as implemented in the PZ PLOT TAB ?

Zero frequency $=$ zero theta $($ deg $) / 360 \times$ clock frequency.

Question 13

For what value of b1 did you achieve the maximum attenuation of the lower message component RELATIVE to the higher component? What levels did you measure?
$B 1=-1.81$

F1=0.1V; f2=1V

Question 14

What components is the TUNEABLE LPF attenuationg in order to give a "clean" signal ?
It is predominantly eliminating the image harmonics around 10 kHz , the sampling clock rate.
It is these harmonics which create the sampled/stepped nature of the discrete output signal.

Experiment 15 - Poles and zeros in the z plane: IIR systems

Question 1

Consider the feedback system in Figure 1.
Show that the difference equation relating the adder output $x O(n T)$ and the input $u(n T)$ is

$$
\begin{equation*}
x_{0}(n T)=u[n T]-a_{1} \cdot x_{0}[(n-1) T]-a_{2} \cdot x_{0}[(n-2) T] \tag{Eqn1}
\end{equation*}
$$

where $n T$ are the discrete time points, T sec denoting the unit delay, i.e. the time between samples.
Show by substitution that $e^{j n T w}$ is a solution, i.e. show that when $x_{0}(n T)$ is of the form $e^{j n T w}$, the input $u(n T)$ is $e^{j n T w}$, multiplied by a constant (complex-valued); w is the frequency of the input in radians $/ \mathrm{sec}$; (the use of complex exponentials for the representation of sinusoidal signals is discussed in Lab 8, 10 and 13.

From the above, with input $u(n T)=e^{j n T w}$ obtain

$$
\begin{equation*}
x_{0} / u=1 /\left[1+a_{1} \cdot e^{-j T w}+a_{2} \cdot e^{-j 2 T w}\right] \tag{Eqn2}
\end{equation*}
$$

Note that x_{0} / u is not a function of the time index n.

$$
\text { SIGEx Expt } 15 \text { Poles and zeros in z plane (IIR) }
$$

Prep solutions

$$
\begin{aligned}
& \text { Q1 From the block diagram, at time } n T \text {, } \\
& \text { the sum at the adder output is } \\
& \qquad x_{0}(n T)=u(n T)-a, x_{1}(n T)-a_{2} x_{2}(n T)(\text { Eq 1.1) } \\
& \text { Hong the delay line we have } \\
& \qquad x_{2}(n T)=x_{1}((n-1) T) \\
& x_{1}(n T)=x_{0}((n-1) T) \\
& \text { and } \\
& \text { hence } \left.x_{2}(n T)=x_{0}(n-2) T\right) \\
& \text { Substituting into Ign } 101 \text {, we obtain the required result: } \\
& x_{0}(n T)=u(n T)-a_{1} x_{0}((n-1) T)-a_{2} x_{0}((n-2) T) \\
& \text { Next, we show that } x_{0}=A \text { exp }(j n T \omega) \text { is a solution } \\
& \text { when the input } u(n T)=e x p(j n T \omega) \text {. First, move all } \\
& \text { the } x_{0} \text { terms to the LHS of the difference eqn: } \\
& x_{0}(n T)+a_{1} x_{0}((n-1) T)+a_{2} x_{0}((n-2) T)=u(n T) .
\end{aligned}
$$

$$
\text { Substitute } A \exp \left(j \text { inT) for } x_{0}\right. \text { in LAS: }
$$

$$
L H S=A \exp (j n T \omega)+a_{1} A \exp (j(n-1) T \omega)+a_{2} A \exp (j(n-2) T \omega)
$$

$$
=A \exp (j n T \omega)\left[1+a_{1} \exp (-j T \omega)+a_{2} \exp (-j 2 T \omega)\right]
$$

$$
\text { For given values of } a_{1}, a_{2} \text { and } T_{1} \text { the quantity in }[] \text { is }
$$

$$
\text { a constant (ie. not a function of the time index } n \text {.) }
$$

$$
\text { If we select the value of } A \text { such that }
$$

$$
A \cdot\left[1+a_{1} \exp (-j T \omega)+a_{2} \exp (-j 2 T \omega)\right]=1
$$

$$
\text { then the RHS }=\exp (j n T \omega)=\angle H S
$$

$$
\text { ire. } x_{0}=A \exp (j n T \omega) \text { is a solution } Q E D \text {. }
$$

$$
\text { From the above we have } \frac{x_{0}}{u}=\frac{A \exp (\operatorname{in} T \omega)}{\exp (\text { inT } \omega)}=A
$$

$$
\text { with } A=\frac{1}{1+a_{1} \exp (-j-T \omega)+a_{2} \exp (-j 2 T \omega)}
$$

END QI

Question 2

Use this result to obtain a general expression for $\left|x_{0} / u\right|$ as a function of w.
Tip: to simplify the math, operate on u / x_{0} instead of x_{0} / u, expressing the result in polar notation.

Set $T=1 \mathrm{sec}$ for the time being, and plot the result for the case $a_{1}=-1.6, a_{2}=0.902$ over the range $w=0$ to $\pi \mathrm{rad} / \mathrm{sec}$. Label the frequency axis in Hz and in $\mathrm{rad} / \mathrm{sec}$. You should find there is a peak in the response near 0.09 Hz .

SIGEx Expt 15 Poles andzeros in zplane
Prep solutions

QR
General expression for $|A|$:

$$
\begin{aligned}
\frac{1}{|A|} & =\left|1+a_{1} \exp (-j T \omega)+a_{2} \exp (-j 2 T \omega)\right| \\
& =\left|1+a_{1}(\cos (T \omega)-j \sin (T \omega))+a_{2}(\cos (2 T \omega)-j \sin (2 T \omega))\right| \\
& =\left|\left(1+a_{1} \cos (T \omega)+a_{2} \cos (2 T \omega)\right)-j\left(a_{1} \sin T \omega+a_{2} \sin 2 T \omega\right)\right| \\
& \left.=\sqrt{ }\left[1+a_{1} \cos T \omega+a_{2} \cos 2 T \omega\right)^{2}+\left(a_{1} \sin T \omega+a_{2} \sin 2 T \omega\right)^{2}\right]
\end{aligned}
$$

An alternative expression can be obtained using

$$
|A|^{2}=A A^{*} \text { where } A^{*} \text { is the conjugate. }
$$

Q3 The roots of the quadratic are $\left.-\frac{a_{1}}{2} \pm \sqrt{(}\left(\frac{a_{1}}{2}\right)^{2}-a_{2}\right)$
Consider the case $\left(\frac{a_{1}}{2}\right)^{2}<a_{2} \Rightarrow$ complex valued roots

$$
-\frac{a_{1}}{2} \pm \dot{J}\left(a_{2}-\left(\frac{a_{1}}{2}\right)^{2}\right)=p_{1}, p_{1}^{*}
$$

Now convert from Cartesian to polar form:

$$
\begin{aligned}
& \left|p_{1}\right|^{2}=\frac{a_{1}^{2}}{4}+a_{2}-\frac{a_{1}^{2}}{4}=a_{2} \Rightarrow\left|p_{1}\right|=\sqrt{a_{2}} \\
& X p_{1}=\operatorname{inv} \cos \left(\frac{-a_{1 / 2}}{\sqrt{a_{2}}}\right) \text { (radians) }
\end{aligned}
$$

For $\quad a_{1}=-1.6, \quad a_{2}=0.902$

$$
\begin{aligned}
& p_{1}=0.95 \exp (j 0.570) \\
& p_{2}=0.95 \exp (-j 0.570)
\end{aligned}
$$

$\left.F(w)=1 / \operatorname{sqr}+\left[(1+a \cos (w)+b \cos (2 w))^{\wedge} 2+(a \sin (w)+b \sin (2 w))^{\wedge} 2\right)\right]$ for $a=-1.6, b=0.9025$

$F(w)=a b s[1 / b \exp (i 2 w)+a \exp (i w)+1]$ for $a=-1.6, b=0.9025$

Question 3

Replace "exp(jTw)" by the symbol "z" in Eqn 2. The result is

$$
\begin{equation*}
H_{_} x_{0}(z)=x_{0} / u=1 /\left(1+a_{1} \cdot z^{-1}+a_{2} \cdot z^{-2}\right)=z^{2} /\left(z^{2}+a_{1} \cdot z+a_{2}\right) \tag{Eqn3}
\end{equation*}
$$

The quadratic $\left(z^{2}+a_{1} \cdot z+a_{2}\right)$ can be expressed in the factored form $\left(z-p_{1}\right)\left(z-p_{2}\right)$.
Using the values of a_{1} and a_{2} given in Question 2 above, find the roots p_{1} and p_{2} (express the result in polar notation). Mark the position of p_{1} and p_{2} on the complex z plane with an " x " to indicate that they represent poles. The distance between these points and the unit circle is of key importance.

This is a parallel process to that in Lab 11 where we plotted zeros. A similar procedure was carried out in Lab 11 for a CT transfer function in the complex variable s.

Write down a formula for p_{1} in terms of a_{1} and a_{2}. Note that p_{1} may be real or complex depending on a_{1} and a_{2}. Determine the conditions for p_{1} to be complex valued. For this case, express p_{1} in polar notation. Take note of the fact that $\left|p_{1}\right|$ does not depend on a_{1} (this will be useful later). Obtain p_{2} from p_{1}.

Question 4

Satisfy yourself that the magnitude response of $H_{-} x_{0}$ is given by

$$
\begin{equation*}
\left|H _x_{0}(w)\right|=1 /\left[\left|\left(e^{j T w}-p_{1}\right)\right| \cdot\left|\left(\exp ^{j T w}-p_{2}\right)\right|\right] \tag{Eqn4}
\end{equation*}
$$

This provides the key for the graphical method described in Lab 13 to obtain an estimate of the magnitude response. Again, we will use $T=1$.

Plot the magnitude of the denominator for selected values of w over the range 0 to π. The quantity $\left|\left(e^{j T w}-p_{1}\right)\right|$ becomes quite small and changes rapidly as the point on the unit circle is moved near p_{1}. Plot additional points there as needed. Invert to get $\left|H _x_{0}(w)\right|$ and compare this with the result you obtained in (b).

Q4: $F(w)=a b s[\exp (i w)-0.95 \exp (+/-i 0.56962]$

SIGEx Expti5 $p-z$ in the z plane ($11 R$) prep solutions

Qu
From Q3, $\left(\exp (j T \omega)-p_{1}\right)\left(\exp (j / \omega)-p_{1}^{*}\right)$ is the factored form
of the quadratic in the denominator in Eqn 2;
ie. Eq 4 is an alternative representation of Eon n 2
The magnitude of this quadratic can be estimated the complicilly as the product of the lengths of complex plane phasons $\left(\exp (j T \omega)-p_{1}\right)$ and $\left(\exp \left(j T_{\omega}\right)-p_{1}^{*}\right)$. The representation of these phacors
is olepicted in the figure below.

Phases diagram for p_{1} factor. Phisor diagram for p_{1}^{*} factor The phasor $\exp (j T \omega)$ traces a circle of unity radius, known as the unit circle. The angular position of $\exp (j T \omega)$ represents the normalized frequency over the range 0 to π, i.e. o to Nyquist. It can he seen from the phasor diagrams that each factor of the quadratic is the sum of $-p_{1}$ and $\exp (j T \omega)$, ie. a phases originating at the pole position and terminating at the point exp $(j T \omega)$.
For the coefficients in Q2 $p_{1}=0.95 \exp (j 0.5 \%)$.
Graphs of the magnitude of each factor of the
quadratic and of the product as a function
of normalized frequency are shown in Fig $x \times x$
From there graphs, over the frequency range of
principal interest, ire 0 to π, we see that the
Contribution of the pole in the upper half plane is
dominant, especially in proximity of the pole.
etd \rightarrow

> SIGEx Expt $15 \quad p-z$ in the z plane (IIR) prep solutions

Q4 cts.
when exp ($j T w$) is near a pole the rate of change of the corresponding contribution is much quester thain that is of the contribution of more distant poles, hence its dominance in the product. All of the above applies also to factors in the numerator, associated with zeros of the transfer function.

Q5 System equation using z^{-1} to represent a unit delay: The output of the addles $x_{0}=u-a, x_{1}-a_{2} x_{2}$ $x_{1}=\frac{x_{0}}{z} . \quad x_{2}=\frac{x_{0}}{z^{2}}$
$\Rightarrow x_{0}+a_{1} z^{-1} x_{0}+a_{2} z^{-2} x_{0}=\mu$
$\Rightarrow x_{0}\left(1+a_{1} z^{-1}+a_{2} z^{-2}\right)=a$
$\Rightarrow \quad \frac{x_{0}}{a}=\frac{1}{1+a_{1} z^{-1}+a_{1} z^{-2}} \quad$ QED

Q6 From Figs

$$
\begin{align*}
y & =b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2} \\
& =b_{0} x_{0}+b_{1} z^{-1} x_{0}+b_{z} z^{-2} x_{0} \\
& =x_{0}\left(b_{0}+b_{1} z^{-1}+b_{2} z^{-2}\right) \\
\Rightarrow \frac{y}{u} & =\frac{b_{0}+b_{1} z^{-1}+b_{z} z^{-2}}{1+a_{1} z^{-1}+a_{z} z^{-2}} \tag{QED}
\end{align*}
$$

END Qb

Question 5

Modify Fig 1 by replacing the unit delays with a gain of $1 / z$ and show that Eqn 3 follows by inspection using simple algebra.

Question 6

Apply this idea to show that the transfer function for the system in Fig. 3 is

$$
\begin{equation*}
H _y(z)=y / u=\left(b_{0}+b_{1} \cdot z^{-1}+b_{2} \cdot z^{-2}\right) /\left(1+a_{1} \cdot z^{-1}+a_{2} \cdot z^{-2}\right) \tag{Eqn5}
\end{equation*}
$$

Question 7

Use the graphical pole-zero method (covered in Experiment 14) to obtain estimates of the magnitude responses for the following cases (0 to Nyquist freq):
(i) $b_{0}=b_{2}=1, b_{1}=2, a_{1}$ and a_{2} as in Question 2.
(ii) $b_{0}=b_{2}=1, b_{1}=-2, a_{1}$ and a_{2} as in Question 2
(iii) $b_{0}=1, b_{1}=0, b_{2}=-1, a_{1}$ and a_{2} as in Question 2

Which of these is lowpass, highpass, bandpass?

In descending order at origin: $f(w)=a b s[\exp (i 2 w)+2 \exp (i w)+1 / b \exp (i 2 w)+a \exp (i w)+1]$ for (a, b) $=(-1.6,0.81)$; ($-1.1,0.55$); ($(-1,0.5)$

In descending order at origin: $f(w)=a b s[\exp (i 2 w)+2 \exp (i w)+1 / b \exp (i 2 w)+a \exp (i w)+1]$ for (a, b) $=(-1,0.45)$; ($-1,0.5$); ($-1.1,0.64$)

BPF: $f(w)=a b s[\exp (i 2 w)+0 . \exp (i w)-1 / b \exp (i 2 w)+a \exp (i w)+1]$ for $a=-1.6, b=0.7$

HPF: $f(w)=a b s[\exp (i 2 w)-2 . \exp (i w)+1 / b \exp (i 2 w)+a \exp (i w)+1]$ for $a=-1.6, b=0.7$

Question 8

Consider a DT system with sampling rate 20 kHz . Obtain estimates of the poles and zeros that realize a lowpass filter with cut-off near 3 kHz . Obtain a highpass filter using the same poles.

$$
\begin{aligned}
& \text { SIGEx Expt } 15 \quad p-z \text { in } z \text {-plane (IIR) } \\
& \text { Prep Solutions } \\
& \text { Sampling rate } 20 \mathrm{kHz} \Rightarrow \text { sampling interval } T=50 \mu s \\
& \text { Nyquist fig }=10 \mathrm{k} H z=20 \pi \mathrm{krad} / \mathrm{s} \text {. } \\
& \text { To realize a End order LPF we use case (i) in } Q 7 \text {, } \\
& \text { ie. two zeros on the real axis at }-1 \text {. }
\end{aligned}
$$

The 3 dB cut-off frq 3 ktz normalizes to $\frac{3 \pi}{10}=0.9425 \mathrm{rad} / \mathrm{s}$. To obtain the required response we will follow a Systematic trial and error process whereby the poles are manipalated to progressively "bend" the shape of the response curve in the desired direction. The starting position is not critical, so long as the poles are inside the unit circle, at an angular position around 0.8 of the cut off: The pole radius should he sufficiently large to produce a moderate overshoot.
The manipulation of the poles with a_{1} and a_{2} is straight forward. From the result in Q 3 we can see the following
(j) with a fixed, a_{1}, moves the pole along an circular are concentric with the unit circle.
(ii) with a, fixed, a_{2} moves the pole so that the real part remains unchanged, $u^{\prime} \cdot$. on a vertical line. Reminders, to avoid migration of the poles to the real axis, check that $a_{1}^{2}<4 a_{2}$. For stability poles must
remain inside the unit circle.

Refer to the graphs to see how a, and a_{2} have been varied to bring the response from a rough estimate to a close approximation of the required shape.

Question 9

For the same sampling rate as in Question 8 obtain estimates of the poles and zeros that realize a bandpass filter centered near 3.1 kHz , with 3 dB bandwidth 500 Hz . HINT: review Question 7

```
SIGEx Expt15 \(\quad p-z \min z\)-plane (IIR)
Prep Solutions
\(Q .9\)
    Modify the placement of the zeros as in \(Q>\) case ( \(i i\) i)
    (i.e. zenos at +1 and -1). The banderiolth is
Controlled with \(a_{2}\), the center frq with \(a_{1}\), (refer to Q 8)
    A faily close apploximation is obtained with \(a_{1}=-1.0, a_{2}=0.81\)
```

 END Q9

BPF: $f(w)=a b s[\exp (i 2 w)-1 / b \exp (i 2 w)+a \exp (i w)+1]$ for $a=-1, b=0.81$

Question 10

Calculate the poles corresponding to these values. Measure and plot the magnitude response at the output of the feedback adder. Note and record the resonance frequency and the bandwidth. Use the poles to graphically predict these parameters; compare with your measurements.

Poles @ 0.8+/-0.5i; hence peak @ 1812Hz. Distance from pole to unit circle $=1-0.95=0.05$
Estimated Gain at peak $=1 /(0.05 \times 1.6)=12 ;$ Gain at $D C=1 / 0.54 \times 0.54=3.45$

Question 11

Decrease $\left|a_{1}\right|$ by a small amount (around $5-10 \%$, say) and measure the effect on the resonance frequency and bandwidth. Use this to estimate the migration of the poles. Does this agree with your expectations?

A1=1.4, Fpk=2.3kHz, and BW is constant

Question 12

Repeat step 3 for a 5% decrease of a_{2}. Compare the effects of varying a_{1} and a_{2}. Which of these controls would you use to tune the resonance frequency? Use the formulas you obtained in the preparation to explain this.

A1 tunes resonantfrequency

A2 controls gain, but affects resonant freq also.

Question 13

With a1 unchanged, gradually increase a_{2} and observe the narrowing of the resonance. Continue until you see indications of unstable behaviour. At that point, remove the input signal and observe the output (if needed, increase a_{2} a little more). Is it sinusoidal? Measure and record its frequency. Measure a_{2}. Calculate and plot the pole positions. Note especially whether they are inside or outside the unit circle.

At a2=1.022, the system breaks into self sustaining oscillations, at 10 V peak and 2.1 kHz .
Using PZPLOT, we find poles at $0.8+/-0.62 i$, with $r=1.011$ (outside unit circle !)
Frequency of poles according to pole position is 2.094 kHzas measured.

Question 14

Begin with a_{2} around -0.9. Describe the effect on the response as the magnitude of a_{2} reduces.
Measure the frequency of the oscillatory tail of the response and compare with your observations in step 5.

As magnitude of a2 reduces, amplitude of ringing reduces.
Fosc $=1.8 \mathrm{kHz}$, for $\mathrm{az}=-0.902$

Question 15

In the model of step 14, adjust a_{2} to reduce the peaking to a minimum. As well you will need to reduce the amplitude of the input signal to 0.5 Vpp to reduce saturation. Confirm this for yourself. Plot the resulting response and measure the new value of a_{2}. Calculate and plot the new poles. Obtain an estimate of the theoretical magnitude response with these poles and compare this with the measured curve. Why was a_{2} used for this rather than a_{1} ?

SIGEx Lab Manual Vol. 1 : Instructors Manual.

Question 16

Change the polarity of b_{1} in the lowpass of step 19 and show that this produces a highpass. Compare with your findings in Question 7.

Question 17

Repeat for case (iii) in Question 7, that is: $b_{0}=1, b_{1}=0 ; b_{2}=-1 ; a_{0}=1 ; a_{1}=-1.6 ; a_{2}=0.902$; Confirm this is a bandpass filter. Tune a_{1} and a_{2} to obtain a peak at 3.1 kHz and 3 dB bandwidth 500 Hz .
Measure the resulting a_{1} and a_{2} and plot the new poles. Compare this with your findings in Question 7.

For ADDER gain settings: 1,0,-1/1,1.1,-0.9, we measure: F-3db at $2.82 \mathrm{khz} \& 3.26 \mathrm{kHz}$, giving approx 400 Hz

3dB BW. Other settings will also be suitable.

Question 18

Implement the following case: $a_{0}=1, a_{1}=0, a_{2}=0.8, b_{0}=0.8, b_{1}=0, b_{2}=1$. Note that $b_{0}=a_{2}$ and $b_{1}=a_{1}$. Measure the magnitude response. Confirm it is allpass. Locate the positions of the poles and zeros. Plot them below for your records.

Zeros: $0+/-1.12 i ;$ poles : $0+/-0.89 i$

Allpass.

Question 19

Change a_{1} and b_{1} to - 1.6 and confirm the response is still allpass. Examine the behaviour of the phase response. Look for the frequency of most rapid phase variation, and confirm this occurs near a pole. Plot the poles and zeros below for your records.

Zeros: $1+/-0.5 i$; poles: $0.8+/-0.4 i$

Allpass. Pole \& zero frequency $=1476 \mathrm{~Hz}$

Question 20

Show your calculation of the where you expect the peak frequency to be using the pole position and sampling frequency.

Poles at $0.8+/-0.51 . \tan \theta=0.51 / 0.8$, hence $\theta=32.5$ deg., hence f pole $=1806 \mathrm{~Hz}$

Note: this is only a very close estimate, as peak may not align perfectly with pole angle.

Question 21

Confirm this relationship from values displayed on PZ PLOT and show your working here:

```
A1 = +1.4 & poles @ 0.7 +/- 0.64i
```

$A 1=-2 \sigma=-2 \times 0.7=-1.4$ We have setup the ADDER gain as +1.4 (negated)

Question 22

Varying a_{2} will vary the gain or peak level of the filter. Notice what happens in the time domain when $a_{2}=-1.0$. The filter breaks into oscillation. View the poles again using PZ PLOT while varying a_{2}.
(Theory states that $a_{2}=r^{2}$).
For $a 2=-1, r=1$, giving oscill. @ 2050 Hz

Question 23

Confirm that the SIGEx hardware performs as designed by theory in terms of notch positions etc. You will have to use the zero positions mostly in these cases. Why?

Notches are implemented by placement of zeros on or near the unit circle.
\qquad
\qquad

Question 24

Try varying design values and take note of the ORDER of the filter designed. NOTE that the SIGEx experiment we have implemented can only support a $2^{\text {nd }}$ order structure. Note your observations.

4 diff HPF filter designs are available on the DFD TAB.

NB: the input noise spectrum serves as a convenient
multi-frequency signal for viewing the filter responses quickly and easily ie: for
qualitative analysis, rather than quantitative measurements.

Experiment 16 - Discrete-time filters - practical applications

Achievements in this experiment

Pre-requisite work

Question 1

Using the method in Lab15 Question 5, show that the transfer function for the system in Fig. 1 is

$$
H_{_} y\left(z^{-1}\right)=y / u=\left(b_{0}+b_{1} \cdot z^{-1}+b_{2} \cdot z^{-2}\right) /\left(1+a_{1} \cdot z^{-1}+a_{2} \cdot z^{-2}\right) \quad \text { (Eqn1). }
$$

Fig 1: block diagram of 2nd-order Transposed Direct-Form2 feedback structure

Question 2

Consider a filter with $a_{1}=-1.84, a_{2}=0.90, b_{0}=1, b_{2}=b_{0}, b_{1}=-1.7$. Calculate and plot the zeros of the transfer functions in (Q1).

Question 3

From the results in (Q1) and (Q2) obtain the ratios x_{1} / y and x_{2} / y expressed as transfer functions in z. Use these to calculate $\left|y / x_{2}\right|$ and $\left|y / x_{1}\right|$ at the peak of the response of the filter in (Q2).

Question 4

Consider the implementation of the filter in (Q2) using the Direct Form 2 structure in Lab 15 Fig 2. Satisfy yourself using only a quick inspection of the diagram, that with this structure the magnitude responses at the internal nodes are identical. Repeat (Q3) for this case, and compare the outcomes. This comparison will be applied in the Lab, hence it's important to have the analysis ready to use.

Question 5

Consider a transfer function with the coefficients in Question 2 and sampling rate 10ksamples/sec.
(a) Sketch the gain response versus frequency and note the peak and null frequencies. Repeat this with sampling rate $20 \mathrm{ksamples} / \mathrm{sec}$. Note that the general shape of the response is virtually unchanged, but the frequency axis has been rescaled.
(b) The outcome in (a) is useful in some applications, however suppose we want to use the faster sampling rate without frequency axis rescaling. This will require relocating the poles and zeros so that their distance from the zero frequency point on the unit circle $(1,0)$ is suitably reduced - by a factor of about 2 , in this case. The pole should slide on a line joining
$(1,0)$ and its original position. The zero should remain on the unit circle. Use a computer to plot and compare the new and original responses. Suggest possible adjustments to the poles and zeros to reduce any differences.

Question 6

Look up a suitable reference to confirm that the the bilinear transformations are as follows (T is the sampling interval):

$$
\begin{aligned}
& s=(2 / T) \cdot(z-1) /(z+1) \\
& z=(1+(T / 2) s) /(1-(T / 2) s)
\end{aligned}
$$

These formulas are used to convert continuous time (CT) transfer functions to discrete time (DT), and vice versa. In this exercise we obtain the $C T$ transfer function for the case in Question 2, and reverse the process with a new value of T to produce the DT transfer function for a higher sampling rate.
(a) Find or write a program for implementing the bilinear transformations.
(b) Use this to obtain the transfer function and the poles and zeros corresponding to the increased sampling rate in Question 5. Confirm that the zeros have remained on the unit circle (optional extra: prove theoretically that z plane unit circle zeros always transform to the j axis in the s plane, and vice versa).
(c) Obtain a plot of the gain frequency response with the new sampling rate and compare this with the original and with the approximate case in Question xxx (b).
(d) Compare the positions of the poles and zeros generated with the bilinear transformations versus the approximate case in Question xxx (b).

Question 7

This question is about the effect of errors in coefficient values that may be encountered as a result of limited arithmetic word length. The errors proposed here are of the order that could occur with a 12-bit wordlength.
(a) Consider the transfer function obtained in $Q .6$ (c). Change the value of $a 2$ by 0.1 percent. Plot the gain frequency response and compare with the original response.
(b) Repeat (a) for coefficient a1, and then for both coefficients together
(c) Examine the shift in the pole and zero positions for the coefficient errors in (a) and (b). Are these consistent with the gain response errors?
(d) Plot the locus of the movement of a pole as $a 1$ and a2 are varied, respectively. Point to aspects of these loci in the region near the point $(1,0)$ that exacerbate the sensitivity issues relating to coefficient quantization.
(e) Is there any significant advantage with floating point arithmetic compared with fixed point for the effects of coefficient quantization?

Table 1: Signal magnitudes for Direct form and Transposed Direct form IIR

	Direct Form 2 (for $\mathrm{u}=400 \mathrm{mv}$)	Transposed Direct Form 2 (for $u=400 \mathrm{mv}$)	Transposed Direct Form 2 (for $\mathrm{u}=1.6 \mathrm{~V}$)
Peak (Hz)	412	400	355
u (Vpp)	0.4	0.4	1.6
y (Vpp)	2.6	2.2	11.5
y/u gain	$2.6 / 0.4=6$	$2.2 / 0.4=6$	11.5/1.6 $=7$
$\mathrm{x}_{1}(\mathrm{Vpp})$	12	2.7	11.5
$x_{2}(\mathrm{Vpp})$	12	2.4	9.5
Upper 3 dB freq.	500	461	433
Lower 3dB freq.	300	111	216
BW ${ }_{\text {3dB }}$	200	350	220

Question 8

What is the maximum level of internal gain you have measured in this filter?
X30

Question 9
Why is it essential to keep the input signal at a low level ie: 400 mv pp ?
So as not to saturate internal gain stages, especially internal ADDER junction

Question 10

Keeping in mind that the SIGEx circuits maximum signal range is $+/-12 \mathrm{~V}$ and the maximum gain of ADDER gain stages is $+/-2$, what is the maximum level of observable signal you must keep within?

$$
+/-6 V
$$

Table 2: Implementation table for mapping coefficients

Theoretical value as per block diagram	Implementation label as per patching diagram	Implementation value
	F	1 (fixed)
$\mathrm{b}_{0}=1$	G	1 (fixed)
$\mathrm{b}_{1}=-1.7$	B2	-1.7
$\mathrm{~b}_{2}=1$	A2	-1
$a_{1}=-1.84$	B0	1.84
$\mathrm{a}_{2}=0.9$	A0	-0.9
	A1	0
	B1	1

Question 11

What is the difference in internal gain between the non-transposed and transposed structures (in dB)?

Non-transpose: 12/0.4=30
Transpose: $2.5 / 0.4=6 \ldots$ hence gain difference $=30 / 6=5=14 \mathrm{~dB}$

Question 12

Document the transfer function and the poles and zeros for this original filter.
Z: $0.85+/-0.53 i$

P: $0.92+/-0.23 i$
Question 13
What do you expect will happen to the pole and zero positions for a sampling rate of 20,000 samples/sec?

Nothing. Sampling rate does not influence pole \& zero positions

Question 14

What do you expect this filter response to be like with a sampling clock rate of 20,000 samples/sec?

Peak \& null should occur at approx twice the previous freq.

Question 15

What are the -3 dB points and bandwidth for this filter at 20,000 samples $/ \mathrm{sec}$?
Fpk $=800 \mathrm{~Hz} . F-3 d B=518 \& 975 \mathrm{~Hz}, B W=460$

Question 16

Approximately how close to the origin will the poles and zeros need to be moved to ?
Halfway

Question 17
What was the best result you were able to achieve in this manner ?
Various results are acceptable. More an exercise to show limits of trial \& error.

Question 18

What are the new poles and zeros using the bilateral transformation approach?
What is the new transfer function for this transformed filter?
NB: This was covered in the pre-lab preparatory questions.
Coefficients: 1;-1.92;1/1;-1.932;+0.95
Z: $0.96+/-0.28 i$, theta=16.2 deg. Poles: $0.97+/-0.13 i, r=0.975$

Graph 2: Response of new filter at 20 kHz

Question 19

What can you say about this new filter in terms of its sensitivity. What are positive and negatives of running this filter design at 20ksamples/sec?
(-): Higher Q needed, less stable as poles close to unit circle, coefft resolution issues arise.
(+): Easier to filter out output images.

Question 20

Can you suggest a range of angles, in which the poles and zeros would be optimally placed in order to avoid the challenges discovered above? This may require experimentation or further reading.

Optimum region is $\theta=15-90$ degrees

Emona SIGEx ${ }^{\text {™ }}$ Solutions Manual -
Signals \& Systems Experiments with the Emona SIGEx Volume 1

[^1]
[^0]: ${ }^{1}$ You may wish o refer back to your notes from "Experiment 3: Special signals", where step and impulse responses were covered.

[^1]: Emona Instruments Pty Ltd 78 Parramatta Road
 web: www.emona-tims.com
 Camperdown NSW 2050
 AUSTRALIA

