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Note to Instructors 

 

The EMONA SIGEx Lab Manual contains 3 types of questions. 

(i) Pre-Lab preparation questions, which review the theoretical principles a student may 

need, to get the most out of each experiment. 

(ii) Experiment questions, in response to findings within the experiment itself, as the 

student carries-out the experiment. 

(iii) Tutorial questions, which are suggested optional questions to further reinforce the 

theoretical principles covered in the experiment. 

This manual is provided as a convenient guide, for instructor’s use only. It offers 

suggested answers to the various questions posed in the SIGEx Lab Manual. Due to 

intentional gain and phase variations between different SIGEx boards, it should be 

understood that each student’s responses, as measured, may differ by more than +/-10% 

with respect to the answers presented in this manual.  

Instructors may also prefer to formulate their own answers to theoretical questions, and 

these may differ from those presented in this manual. 

The SIGEx Lab Manual and Instructors Manual is not a replacement for a textbook. It 

is primarily aimed at guiding students to implement their learnings from formal lectures, in 

a hands-on, experiential manner.  

Students will almost certainly learn more from their mistakes and misapprehensions, than 

they will from completing the experiments without incident. Taking time to sort out 

unexpected results will be of great benefit to their learning process. 

The SIGEx board is not calibrated. In fact, it is considered a virtue of the hands-ons 

modelling approach that circuit responses between boards may differ slightly. This will 

result in slightly different responses from the various circuit blocks.  Adjacent students 

will therefore need to pay attention to their own measurements rather than copying the 

results of others. 

Answers to theTutorial questions are not provided, as these questions are suggested as 

optional work, if time permits. It is left up to the individual instructors to provide 

guidance in lectures about these questions. 

We hope that your students enjoy working with the EMONA SIGEx board and welcome 

your comments via email at any time. 

 

Best regards, 

Carlo Manfredini 

EMONA TIMS 
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Experiment 3 – Special signals – characteristics and applications 

 
Question 1 

What is the  minimum interval of the SEQUENCE GENERATOR data ? 

 

1 ms 

 

 

Question 2 

Describe the signal transitions for both outputs: 

 

BBLPF, has some overshoot then settles, whereas the TLPF has several cycles of overshoot 

before settling. 

 
Table 1: transition times for sequence data 

 

 

 

Question 3 

Describe the signal transitions for both outputs: 

 

Above 3500 Hz the BLPF signal no longer transitions completely between states for 0-1 

patterns.  The channel places a limit on the  transition rate. 

 
Table 2: transition times for step input 

 

 

Range  

(%) 

BLPF@1kHz 

(us) 

TLPF@1kHz  

(us) 

BLPF@1.5kHz  

(us) 

TLPF@1.5kHz  

(us) 

10-90 rising 220 70 220 75 

10-90 falling 220 70 220 75 

1-99 rising 360 114 350 114 

1-99 falling 360 114 350 114 

Range  

(%) 

BLPF 

(us) 

TLPF  

(us) 

RCLP  

(us) 

10-90 rising 210 70 2120 

10-90 falling 210 70 2120 
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Graph 1: step response waveforms 
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Question 4 

Describe what happens when you reach 10% and 5% duty cycle ? 

 

The amplitude of the BLPF output begins to reduce. 

The TLPF output begins to stop ringing and have no “flat top” at all. 

 
Table 3: pulse response readings 

 

 

 

 BLPF TLPF  RCLPF  

Duty cycle 

 “demarcation” value 

0.1 0.04 - 

Calculated pulse width (us) 400 160 ~3000 

% of step response 200 200 150 

Period of oscillations (us) 480 140 - 
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Graph 2: differentiations of step response waveforms 
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Table 4: amplitude vs frequency readings 

 

 

Question 5 

What frequency would a matching sinewave have ? 

 

Its period would be twice the step response time ie: BBLPF=420us:2380 Hz.  

TLPF=140us:7142Hz. RCLPF=4000us:250Hz 

 

 

Question 6 

Describe what happens to the frequency response plotted on the SFP at this frequency ? 

 

The response starts to drop off at that frequency, down to approx. 0.7 times initial value 

 

 

Question 7 

What was the mechanism described earlier ? 

 

The incoming signal doesn’t have enough time to transition between levels before changing 

direction, because the SUI’s “inertia” (resistance to change) is slowing it down. 

 

 

 

 

Frequency (Hz) BLPF (Vpp) TLPF(Vpp)  RCLPF(vpp)  

100 3.45 3.4 3.4 

500 3.45 3.4 1.3 

1000 3.26 3.4 0.68 

1500 2.85 3.4 0.48 

2000 2.05 3.36 0.35 

4000 0.16 2.9 0.2 

6000 0.1 3.14 0.13 

8000 << 0.1 1.72 < 0.13 

10000 << 0.1 < 0.1 < 0.13 
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Graph 3: CLIPPER input and output readings 

 

Next we use the CLIPPER as a primitive digital detector. 
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Question 8 

How does this setup compare to the previous findings without a LIMITER ? 

 

The LIMITER enables the recovery of signals at a much higher rate then without. 

 

 

 
 

 



 



 
© 2011 Emona Instruments                           Experiment 4 - Systems – Linear & Nonlinear V1.1 4-2 

Experiment 4 – Systems – Linear & Nonlinear  
 
Question 1 

Write down a formula to express the square of a sinusoid in terms of a double angle argument. 

[Asin(wt)]2 = ½A - ½.Acos(2wt)    

 

 
Question 2 

What is the meaning of differential linearity ? 

A constant relation between the change in the output and input. 

 

 
Question 3 

How would you apply these formulas in testing systems for linearity in this Lab ?  How many 
replicas of the system are needed for the additivity test ? 

Implement the formulas with models using a module as a S.U.I 

At least 2, but 3 for simulataneous testing. 

 
Table 1 

Input amplitude  

(Vpp) 

LIMITER amplitude  

(Vpp) 

RECTIFIER amplitude  

(Vpp) 

1 3.2 0.42 

2 3.2 1.28 

3 3.2 2.2 

4 3.2 3.2 

5 3.2 4.1 

6 3.2 5.0 

7 3.2 6.0 

10 3.2 9 
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Question 4 

Does this system  (CLIPPER) satisfy the scaling test for linearity? Show your reasoning. 
 

No. The output does not follow the input proportionally. 

 

 
Question 5 

Does this system  (RECTIFIER) satisfy the scaling test for linearity? Show your reasoning. 
 

Yes. It does follow the input amplitude proportionally, for voltages above 4Vpp 

 

 
Table 2 

 
 

Question 6 

Does this system  (MULTIPLIER) satisfy the scaling test for linearity? Show your reasoning. 
 

No. The output does not follow the input proportionally. 

Squaring is a quadratic relation. 

 

Input amplitude  

(Vpp) 

MULTIPLIER amplitude  

(Vpp) 

1 0.29 

2 1.1 

3 2.5 

4 4.37 

5 6.88 

6 9.8 
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Table 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question 7 

Is the VCO a linear system ? Explain your reasoning. 
 

Freq change varies proportionally with input voltage change 

 

 
Question 8 

What applications could the VCO with varying output frequency be used for ? 
 

The input could be a message  which varies an VCO output RF freq for transmission ie FM 

 

  
Question 9 

What is the  formula for the INTEGRATOR output ? 
 

Out(t) = k.integ (DCdifference) dt 

K=10V/0.5ms/1.6V = 12,500 /s 

 

Input DC voltage  

(V) 

VCO output frequency  

(Hz) 

-3 869 

-2 1235 

-1 1610 

0 1970 

1 2320 

2 2700 

3 3210 
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Question 10 

What are the  formulae for the other INTEGRATOR  rate settings ? 
 

Out(t) = k.INTEG( +-DC dt) 

INTEG DIPS = DW:DW saturates...rate too high for this frequency 

 
Question 11 
Use the value of the b2 gain, and INTEGRATOR constant you measured above to determine the 
time constant of the exponential responses. Compare this with the value obtained from your 
measurement. 

B2=-1, k=12,500 

Time constant = 1/12,500 = 80us 

 
Question 12 

Write a differential equation for this first-order feedback system. Assume initial conditions 
are zero.  Show that with a sinusoidal function of time as input, the output is also sinusoidal.  
Show that this also happens when the input is a complex exponential. Which special property of 
complex exponential functions provides the key?  

y’(t) – b2y(t) = u(t); where b2=-1 
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Graph 1: additivity signals 

 
Question 13 
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Does the outcome indicate that the linearity conditions have been met for these two test 
inputs?   

Yes 

 

 
Question 14 

Does the outcome during variation  indicate that the linearity conditions are still maintained for 
these two test inputs?   

Yes 

 
 

Question 15 

How are you able to use the square wave for this test ? 

No. The output has ripple which varies with frequency. 

 

 

Input frequency  

(Hz) 

Square wave 

output (V) 

Sine wave  

output (V) 

100 1.73 V pk 1.78 V pk 

300 1.73 1.78 

600 1.82 average 1.78 

900 1.94 1.64 

1200 1.94 1.55 

1500 1.82 1.42 

1800 1.55 1.2 

2100 1.17 0.92 

2400 0.79 0.63 

2700 0.5 0.41 
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Experiment 5 – Unraveling Convolution  

 
Question 1 

Describe a procedure for confirming the GAIN at each tap ? 

 

Remove leads to the B ADDERs leaving only 1 of 3 attached and view the output pulse height. 

 

 

Question 2 

Display the delay line input signal (i.e. at the first z-1  block input) and the ADDER output signal. 

Measure and record the amplitude of each pulse in the output sequence. 

1V in, 0.3, followed by 0.5, followed by -0.2V pulses. 
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Graph 1: unit pulse pair summation 

 

Question 3 
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What is meant by “superposition”. Discuss how this exercise above relates to superposition and 

the “additivity” principle. 

 

Treating parts of an input individually, and taking the sum of the outputs of the parts as 

the output of the whole, as per the additivity principle. 

 

Question 4 

What do you expect to see if this exercise were expanded to two or more contiguous pulses ? 

Explain. 

 

A longer output pulse. 

 

 

Question 5 

Note the amplitude of the half wave rectified sine and explain why its amplitude is reduced 

relative to the input ? 

 

The RECTIFIER is a real circuit, not an “ideal” device, and hence has a forward voltage drop 

Of approx 0.5V 
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Graph 2: inputs and sampled outputs 

 

Question 6 

How does this process relate to the principle of “superposition” ? 
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Addition of each component pulse into the complete output sum is using superposition. 

  

 

Question 7 

Write down the formula for y(2) and y(1) ? Discuss any unexpected differences . 

y(1) = b0 .x(1) + b1 .x(0) + b2 .x(-1) 

y(2) = b0 .x(2) + b1 .x(1) + b2 .x(0) 

 

Question 8 

Explain why this term is reversed and what does this mean ? 

It represents time reversal, and equates to the values being processed in reverse order. 

 

 

Question 9 

What is a common label for this response ? 

 

3-point moving average (MAV) 
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Graph 3: sinewave input signals 

 

Question 10 

Show that the formula remains valid. 
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Question 11 

Show your working for the sum of squares analysis ? 

 

8 samples are :-0.8, -1.3, -1.0, -0.1, +0.8, +1.3, +1.0, +0.1. Pairs are [-0.8, -1], [-1.3, -0.1], [-1, 0.8] 

[-0.1,1.3], [0.8,1],[1.3,0.1].SS of pairs within 4% of each other 

 

Question 12 

Why is the outcome obtained above described as filtering? 

The system passes frequencies selectively, hence it “filters” some and not others. 
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Experiment 6 – Integration, convolution, correlation  

and matched filters  
 

Pre-requisite work 
 

Question 1 

For both a maximal length PRBS, of 31 and 63 bit length,  calculate the ACF function values for 

all possible positions.  

ACF of m-sequence of period N = N for k=0; -1 for 1 <= k <= N-1 

Where k = delay index. Use N = 31 & 63. 

 

Question 2 

Calculate the sequence from a 5 bit LFSR using feedback taps 5 & 3. 

This is the same as for SG UP:UP sequence 

[1111100011011101010000100101100] 

 

Question 3 

(a) For the set up in Fig11, write down an expression for x(t) in terms of the 

input y(t) and the S.U.I. impulse response h(t).  

Convolution y*h 

 

 

(b) Write down an expression for the CCF of x and y, and substitute the 

expression for x from (a). 

 

(c) Demonstrate that the result in (b) can be reduced to the convolution of  h(t) 

and the ACF of the input. 

 

(d) Show that if the ACF of y is an impulse function,  the output of the cross-

correlator gives h(t) (with a scaling factor). 

 

(e) Demonstrate that if the input is white noise the ACF is an impulse 
 

Question 4 

(a) In the term "matched filter" what are the items that are matched? 

the impulse response of the MF is matched to the pulseform of  the 

data symbol at its input 

 

(b) What is the role of the MF in a digital communication receiver? 
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The MF provides the best SNR at the decision instant, hence the least 

probability of error. 

(c) describe the operation of the "integrate & dump" process in a digital 

communication receiver 

 

(d) explain why the I&D receiver is effectively a filter with a square pulse as its 

impulse response  

 

(e) extend (d) to explain why the I&D receiver is the matched filter for square 

pulseform data sequences in additive white noise 
 

Question 5 

What voltage is the output of the MULTIPLIER ? Explain why this is so   

4V.   

+2V * +2V = 4V, or -2 * -2 = 4V 

 

Question 6 

What voltage would the ramp have reached if it had not saturated ?  

Rate = 10.5/4ms = 2625 V/s, so for a period of 10ms 

2625 * 10ms = 2625 * 0.01 = 26.25V 

 

Question 7 

What voltage is at the I & H output ?  

-0.75 V 
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Graph 1: Plot of I & H voltages vs. delay position n 

 

Question 8 

How well do these results correspond with your theoretical expectations from the pre-lab 

preparation work ? 
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 Very well. Theory expects 31:-1, measurements give 26:-0.75. If we scale these by 31/26 

it gives 31:-0.9 

 

Question 9 

How well do these results correspond with your theoretical expectations ? 

Similar relationships. 

 

 

Question 10 

Based on your measured ACF, what can you say about this sequence ? 

26V;4.1V; -2.5V; -2.5V. This sequence is not maximal length 

 It probably includes repetition.Will not have a uniform spectrum. 

 

Question 11 

What observations can you make about this signal from its ACF ? 

Alignment occurs at n=18.ACF as for a maximal length sequence. 

 

 

Question 12 

What observations can you make from this cross-correlation about the nature of the two 

sequences ? 

Not correlated at all. Very different sequences. 

 

 

Question 13 

Write down the 31-bit pattern for both PRBS sequences here. Note also the number of bit 

pattern “runs” ? Why is the pattern “00000” not present ? 

SG-PRBS:[1111100011011101010000100101100] 

ALT-PRBS: [1111100110100100001010111011000] 

4 runs of 0 & 1; 2 runs of 00 & 11; 1 run of 000 & 111; 0 runs of 1111; 1 run of 0000;  

1 run of 11111; 0 runs of 0000 as 0000 is illegal. 0000 would cause the LFSR to stop. 
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Graph 2: using exponential pulses 

 
Question 14 

How could you describe this function ? 

A “delta function”, as it is prominent only at one point 
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Question 15 

Is the bandwidth of the proposed input for this exercise adequate for this application ? 

Pulse rate = 3.3kHz.Time constant of RC NETWORK impulse response is around 1ms, so 3dB 

Bandwidth of SUI (RC) = 1000rad/sec = 160Hz. Hence 3300/160 = approx.20 = adequate. 
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Graph 3: in/out correlation plots 

 

Question 16 

Describe the output waveform from the correlator  for the RC NETWORK SUI ? 

Resembles the impulse response of an RC NETWORK. 
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Question 17 

Describe the output waveform from the correlator for the TUNEABLE LPF ? 

Resembles the impulse response of the TUNEABLE LPF, including the ringing. 

 

 

Question 18 

How many errors do you estimate are occurring in the recovered data signal after the filter ? 

Zero. The final point of the integration is well clear of the decision boundary at 0V. 

Statistically, there may be errors however we are not covering that issue here. 

 

Question 19 

How do you determine when errors are occurring ? At what signal levels did this occur ? 

Visually, ifthe end point ofthe integration, at the decision instant only, has crossed over the 

0V threshold.Temporary excursions do not cause errors eg near 3 ms in Figure 17 

When signal gain = 0.1, and noise gain = 2 (max), it is possible to see occasional crossovers. 
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Graph 4: integrate & dump filtering 
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Pre-lab preparation 
 

Question 1 

Confirm your understanding of the algebra associated with complex number by solving these 

equations using the binomial method : 

a) (3 + i2) + (5 – i6)  b) (3 + i2) x (5 – i6) c) (3 + i2) - (5 – i6) 

d) (a + ib) + (c + id) e) (a + ib) x (c + id) f) (a + ib) x (a – ib) 

8 – i4; 27 – i8; -2 +i8; 

(a+c) + i(b+d); (ac-bd) + i(bc + ad); a2 + b2 

 

 

Question 2 

Confirm your understanding of the algebra associated with complex number by solving these 

equations using vectors. Sketch your working on the graph below: 

a) (3 + i2) + (5 – i6) b) (3 + i2) x (5 – i6) c) (3 + i2) - (5 – i6) 

d) (a + ib) + (c + id) e) (a + ib) x (c + id) f) (a + ib) x (a – ib) 

a) (3 + i2) == 3.6//33degrees 

f) (a+ib)x(a-ib)=conjugates= a2 + b2//0 degree 

 

Question 3 

Write the equation for signals at DAC-1 and DAC-0 as a function of time in the form: A.cos(wt + θ). 

Think of the centre of the scope timeline as the instant t=0. 

DAC-1 = 1.cos(wt+0) 

DAC-0 = 1.cos(wt-(2π.90/360));  2π.90/360 is 90 degrees expressed in radians 

 

Question 4 

Explain why the XY graph displays a circle ? 

Locus of sinwt vs. coswt inscribes a circle. 

 

 

Question 5 

Explain the signal as viewed on the XY graph  ? 

DAC-1 drives the horizontal X axis of the X-Y display, whilst DAC-0 drives the vertical Y axis. 
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Graph 1: Vector arithmetic  

 



 

                                       © 2011 Emona Instruments                      Experiment 7 – Exploring complex numbers & exponents V1.1 7-4 

  

Question 6 

Write the equation for signals at DAC-1 and DAC-0 as a function of time in the form: A.cos(wt + θ). 

DAC-1 = 1.cos(wt-15deg) 

DAC-0 = 1.2cos(wt+75deg); Degrees shown for convenience.Should be expressed in radians. 

 

Question 7 

Measure and document the equation for the sum of the two sinusoids. Compare this with the 

expected resultant using the phasor method. 

Define DAC-1=1cos(wt+0), then f+g = 1.4.cos(wt+45deg), as phase difference is  

1.25/10*360 = 45 degrees or π/4 radians. Phasor gives the same. 

 

Question 8 

What is the output sum signal for these settings ? Is this expected ? Explain. 

0. expected as the signals null each other. 

+180 degree shift is the same as -180 degree shift. 

 

 

Table 1: resultant amplitude readings 

 

 

Phase 

(degrees) 

Resultant amplitude  

(Vpk) 

Phase 

(degrees) 

Resultant amplitude  

(Vpk) 

0 2 210 -1.75 

30 1.75 240 -1 

60 1 270 0 

90 0 300 1 

120 -1 330 1.75 

150 -1.75 360 2 

180 -2   
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Graph 2:plot of resultant from measurements 

 

Question 9 

What is the equation for this resultant signal ? 
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2.cos(wt) 

 

 

Question 10 

What is the equation for this resultant signal for a1=0.5 ? 

N(t) = 4.5 .2-1000t 

 

 

Question 11 

What is another term for the time constant when a1=0.5 ? 

Halflife 
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Experiment 8 – A Fourier Series analyser  

 
Question 1 

How would you expect the summation of to look if you could add up many more harmonics ? 

Similar shape, with maximum reaching “n” for n harmonics. 

Corners becoming squarer. 

 
Question 2 

What is its peak amplitude and is this as expected ? 
 

10V. Yes, as cosine harmonics are equal to 1 at t=0. 

 

Question 3 

Is the fundamental an odd or even function ? Is the summation odd or even ? 
 

Even. Even 

 

 
Question 4 

Write the equation for the summation of the 10 signals ? Is it symmetrical about the X axis? 
 

cos(1wt) + cos(2wt) + cos(3wt) + …+cos(10wt) 

No. 

 
Question 5 

Vary the amplitudes and notice how the signal changes . You may  set the amplitude of certain 
components to 0 as you see fit. Can you create a wave form which starts at a zero value ? 
Write the equation for your new varied amplitude signal ? Does it start at a zero value ?  

 

Will never start at a zero value. 

 
Question 6 

How would you expect the sine  summation of to look if you could add up many more harmonics ? 

Mainly zero level with positive and negative impulses at the fundamental. 

 

 
Question 7 
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What is its peak amplitude and is this as expected ? Is this an odd or even function ? 
 

Approx. 7.5V.  

Odd 

 
Question 8 

Vary the amplitudes and notice how the signal changes . You may  set the amplitude of certain 
components to 0 as you see fit. Can you create a wave form which starts at a non-zero value ? 
Write the equation for your new varied-amplitude signal ? Does it start at a non-zero value ? Is 
it symmetrical about X axis.? 
 

No.All sinewaves harmonics are equal to 0 at t=0. 

Yes 

 
Question 9 

Write the equation for the summation of these 2 waves ? Write the equation for the summation 
in terms of the sine wave with a non zero phase shift. 
 

Sin(wt) + cos(wt) = 1.4sin(wt + 45degrees) = 1.4sin(wt + π/4) 

 

 
Question 10 

Describe how the summation changes as you vary the respective amplitudes? 
 

The resultant amplitude & phase vary. 

  

 
Question 11 

For a particular pair of amplitudes you have set, write the equation for the summation in terms 
of sine and cosine as well as its equivalent polar representation ? 
 

Sin(wt) + cos(wt) = 1.4sin(wt + 45degrees) = 1.4sin(wt + π/4) 

1//-90deg + 1//0deg = 1.4//-45deg 
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Graph 2: components & resultant 
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Question 12 

What is the output value at the end of the integration period ? HINT: the I&H function will 
hold the final value. 
 

Zero volts. 

  

 
Question 13 

What is the average value of these three products ?  
 

 

  

 
Question 14 

What is the average value of these products ?  
 

Non-zero, approx 2 V, however note that the TLPF gain has not been set to unity, so the only 

Valid conclusion is that the result is non-zero. 

 
Question 15 

Write the complete formula for the product of a cosine, Acoswt, by itself? What do the terms 
represent? 

cos(wt) * cos(wt)  = ½cos(2wt) + 1/2 

Cos(2wt) is the sum term with 0 average, and ½ the difference term, which is also a DC 
component. 
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Table of measured coefficients 

 
Question 16 

How do your readings compare with expectations ? . Explain any discrepancies .  
 

Very accurate. 

 

 
Question 17 

What do you notice about their phase relationship ? Is this to be expected ? Explain. 
 

They are drifting relative to each other. As they are not synchronized, this is to be expected. 

 

Harmonic  

number 

sine 

(V) 

cosine 

(V) 

1st 0 1 

2nd 0.3 0 

3rd 1 0.5 

4th 0 0 

5th 0 0 

6th 0 1 

7th 2 0 

8th 0 0 

9th 0 0 

10th 0 0 

DC (V) = n/a n/a 
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Table of measured coefficients 

Question 18 

Can you explain if your readings differ in some places from the actual value ? 
HINT: you have one value per harmonic instead of two. Consider the previous discussion above 
about resultants in your answer. And to allow for MULTIPLIER and TLPF gains. 
 

Readings are accurate. Measurement error may arise. 

Value at 300Hz is a resultant of 2 orthogonal components. 

 
 

 
Table of measured coefficients for squarewave 

Input  

frequency (Hz) 

TLPF output 

pp swing (V) 

Half of 

pp (V) 

Entered 

values 

Calculated 

resultant (V) 

100 2 1 1;0 1 

200 0.6 0.3 0;0.3 0.3 

300 2.2 1.1 0.5;1 1.11 

400 0 0 0;0 0 

500 0 0 0;0 0 

600 2 1 1;0 1 

700 4 2 0;2 2 

DC (V) = - 0.45 0.5 0.5 

Input  

frequency (Hz) 

TLPF output 

amplitude (V) 

Scaled measured values 

(V) 

Calculated 

resultant (V) 

100 1.6 1 1 

200 < 0.1 - 0 

300 0.5 0.31 1/3 = 0.33 

400 < 0.1 - 0 

500 0.3 0.19 1/5 = 0.2 

600 < 0.1 - 0 

700 0.2 0.125 1/7 = 0.14 

DC (V) = 2.25 2.25 2.4 
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Question 19 

Why are some of the harmonics hard to detect ? 
 

They are quite small, and even harmonics are not present. 

  

 
Question 20 

Can you now detect even harmonics in the squarewave of 20% duty cycle  ? 
 

Yes, they are now present. 

 

 
Question 21 

Compare your measured coefficients for the first 4 odd harmonics as ratios to that expected 
by theory ? Remember to normalize the measurements for the comparison. 
 

Comparison in the table above. Results are close to theory after normalizing. 

 

 

 

References 
 
Langton.C.,”Fourier analysis made easy ”, www.complextoreal.com 
 

http://www.complextoreal.com/
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Experiment 9 – Spectrum analysis of various signal types  

 
Pre-requisite work 
 

Question 1 

What is the conversion equation for a linear voltage scale to a logarithmic scale ? 

 

Log(dB) = 20log10(V2/V1); where V2/V1 is a linear ratio 

 

 

Question 2 

What linear ratio does a -6dB gain equal ? 

-6dB = 20log10(V2/V1); so V2/V1 = 10exp(-6/20) = 0.5 

Saying a level has reduced by -6dB is equivalent to saying it has halved. (+6dB == doubling) 

 

Question 3 

List some of the more important characteristics of PN sequences: 

 

Maximal length sequences with n stages (LFSR) repeat every 2n-1 clocks. Maximal length  

Sequences are orthogonal ie: are correlated at only one point. # runs is well defined. 

 

Question 4 

Multiply a sinewave with a squarewave so as to create a halfwave  rectified sinewave and 

calculate its spectrum:  

 

 

 

 

Question 5 

At what frequencies do the nulls occur at ?  

n x 5000; n=1,2,3….. 

 

 

Question 6 

What is the mathematical relationship between null spacing and the pulse width ?  

n x 1/pulse width  ; n=1,2,3,… 

 

 

Question 7 

What are the characteristics of the sin(x)/x form that you are looking for ?  
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Zero crossing points (sin x), amplitude of envelope ( 1/x) 

 

 

Question 8 

What is the general trend that you are observing as the duty cycle tends towards 0 ?  

Null being pushed out to infinity, and spectrum envelope tending to become a constant level. 

 

 

Question 9 

Using the various findings so far, what shape  you expect the spectrum of a single pulse, that is, 

a pulse train with very large separation between pulses, to have ?  

It should have components to infinity, all with a constant amplitude. 

 

 

Question 10 

At what time instants  does the sync pulse have a zero crossings ? 

 

Every 0.1 ms 
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Graph 1: sync pulse train time and frequency responses 

 
Question 11 

Why do you suppose state [00000] is illegal ? 
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The system would lock and never change state from 00000 

 

 

Question 12 

Where do the nulls occur ? What is the separation between harmonics ? What do these values 

relate to ? 

 

At multiples of the clock rate, 2000, 4000, 6000 Hz, … 

Measured to be approx 66Hz.Theory states 2000/31 = 64.5 Hz 

 

Question 13 

Where do the nulls occur ? What is the separation between harmonics ? What do these values 

relate to ? 

 

At multiples of the clock rate. These cant be measured.The separation should be  

Clk rate/16383 Hz…too close to measure with our current setup. 

 

Question 14 

How many harmonics are visible in the filter output ? 

 

5 or 6. Not satisfactory, too repetitive. Period too short. 

 

 

Question 15 

How many harmonics are visible in the filter output ? Calculate this. 

 

Seperation =2000/16383 = 0.122Hz. Impossible to determine visually. 

250Hz/0.12 = 2047 harmonics. 

 

Question 16 

Is this analog noise signal periodic ? What is its period ? Calculate this 

 

Yes, though it is not measurable with current setup. 

Period = 16383 x 1/2000 =  8.2 seconds. (NB 8.2 sec = 1/0.122 from previous question) 
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Graph 2: clipped signals and spectra 

 

Question 17 

What effect does a higher level of clipping have on the spectrum of the clipped signal ? 

 

Harder clipping gives more spectral harmonics 
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Question 18 

What is the relationship between the input frequency and the output harmonic frequencies ? 

 

Harmonics occur at integer multiples of the input frequency. 

 

 

Question 19 

What can you say about the spectrum of the rectified sine wave ? Is this what you would have 

expected ? Refer back to your pre-lab preparation questions. 

 

Yes. As expected. Far less harmonics than for the clipped case. 

 

 

Question 20 

Is the clipping process a linear or non-linear process ? Explain. 

 

Non-linear. Clipping creates harmonics which were not existent in the original signal. 
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Experiment 10 – Time domain analysis of an RC circuit  
 

Pre-requisite work 
 
Question 1: the step response 

This question follows the integration method in Section 4 of S.K.Tewksbury's notes 
http://stewks.ece.stevens-tech.edu/E245L-F07/coursenotes.dir/firstorder/cap-difeq.pdf 
 
(a) Apply elementary circuit theory to show that the voltage equation for the RC circuit in 
Figxxx is   
 
 V_in (t) = i (t). R + V_cap (t) = i (t). R + Q(t)/C  Eq prep1.1 
 
Where Q(t) is the charge in capacitor C. 
   
(b) Show that this can be expressed as  
 
 (d/dt)(V_in) = R.di/dt + i/C 
 
Consider the case where V_in(t) is a step function of amplitude V_o and the capacitor charge 
Q(t) = 0 at t = 0. Show that for t > 0 (d/dt)(V_in) = 0 and the DE reduces to 
 
 di/dt = - a. i [a =  (1/RC)]  
 
Use (d/dt)log_e(i) = 1/i to show that the solution of the DE is  
 
 i(t)  = i_o exp( - a.t)  (t > 0)  [i_o = V_o/R] 
 
(c) Use Eq 1.1 to show that  
 V_out(t) = V_cap(t) = V_in(t) - R.i_o exp( - a.t) 
 
Hence the step response V_out/V_in  =  (1 - exp(- a.t)) 
 
(d) Plot the result in (c) for a = 1000 
 
(e) What is the asymptotic value of the step response as t increases indefinitely?  Show that 
the step response rises to (1 -1/e) of its final value at t = 1/a. 
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Question 2: the impulse response 
(a) Describe the main properties of the theoretical impulse function. 
 
Show that differentiation of the unit step function wrt t produces a unit impulse at t = 0.  Apply 
this to the step response result in Question P1(c) to show that the impulse response h(t) of the 
RC circuit is  
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 a. exp(- a.t) 

 
(b) Explain why the impulse function can only be approximated in practice.  
 
Sketch an impulse approximation realized as a finite width pulse.  Explain why an excessively 
narrow pulse is undesirable in practical applications.  Estimate a pulse width that would be 
suitable for use with the case in Question P1. Indicate your reasoning. 
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(c) Using the property in (a) we could generate the impulse response by first recording the step 
response, then differentiating.  Compare this alternative with the use of a finite width pulse 
input.  Include discussion of signal peak limitations and output amplitude considerations. 
 
(d) Show that the impulse response falls to 1/e of its initial value at  
t = 1/a 
 

 
Question 3: convolution and response to an exponential input 
This question introduces convolution and its application in the analysis of systems like the RC 
circuit in Q. P1. 
 
(a) The convolution of the time functions x_1 and x_2 can be expressed as  

 
 x_1 * x_2 =     [for t > 0] 

 
Note that the convolution is a function of t and that tau is a dummy variable that has no further 
role after integration. 
 
Show that changing the order (x_2 * x_1) does not change the result. 
 
Show that if x_1 is a unit impulse the convolution x_1 * x_2 = x_2(t).  
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Suppose we approximate a continuous time signal x_1(t) as a sum of very narrow contiguous 
pulses, each of which can be thought of as representing an impulse function (each with its 
individual amplitude). Suppose next that this pulse train representation of x_1(t) is then applied 
as input to the system introduced in Q. P1. Each of the pulses in the train will produce an 
individual output that will be a close (weighted) approximation to the system's impulse response. 
The overall output will be the sum of these (overlapping) weighted impulse response 
approximations.   
Demonstrate that this sum is effectively the convolution of x_1 and the system's impulse 
response h(t). (Invoke the usual limit methods to morph the discrete sum into a continuous time 
integral.)  
 
(b) Show that for t > 0, the convolution for the case 
         x_1(t) = exp(- a1.t) and x_2(t) = exp(- a2.t)     [a1 N.E. a2] 
 
is (1/(a2 - a1)) . (exp(- a1.t) - exp(- a2.t) 
  
(c) Sketch the graph of the result in (b) versus t over the range t > 0. Show that for positive 
values of a1 and a2 the function is positive for t > 0, and that it is zero at t = 0 and t-> infinity. 
Find the peak and the corresponding value of t for a1 = 0.5 and a2 = 1.1 . 
 
(d)  Use the results in (a) and (b) and in Q. P2(a) to obtain the response of the RC circuit in Q.P1 
when the input is  
 
    x_1(t) = exp(- a1.t) 
 
(e) Repeat the tasks in (b) and (c) for the case a1 = a2 = a.   
 
NB: a useful reference for this question is Schuam Laplace Transforms (1965); p45 (convolution 
of two exponentials) 
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Question 4: response to a sinusoidal input 
 

In  Q. P1 we sought the output of the RC circuit in Fig xxx for the case in which the input is a 
step function.  This result was extended in Q. P2 and P3 for an impulse function input and for an 
exponential input. Now we examine the solution when the input is sinusoidal.  This case is of 
special importance in this work as it opens the way to powerful tools for the solution of systems 
of much greater complexity than the introductory example under investigation here. 
 
(a) Use the result in Q.P1(a) to show that  
  
 V_in (t) = RC.(dV_out/dt)  + V_out (t)   Eqn. P4.1 
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To simplify the analysis we will use the complex exponential A_in.exp(jwt) to represent the 
input sinusoid [recall that exp(jwt) = cos(wt) + j.sin(wt)]. 
In Q. P1(b) we obtained a solution of the DE by direct integration. However, sometimes it turns 
out that invoking a "feeling lucky" approach can provide the desired result:   
 
a solution of the form  
 V_out = A_out . exp(j.phi_out) . exp(jw.t)  
is substituted into the RHS in the above DE.  
Show that this is a solution for a suitable value of A_out . exp(phi_out).  (The suitable value is 
the one that makes the RHS = LHS).  With A_in = 1, show that the sought value is  
  A_out . exp(phi_out) = 1/(1 + jwRC) 
 
Hence show that V_out = V_in . 1/(1 + jwRC) = V_in . (1/RC)/ (jw + (1/RC))  
 
Note that this result has a very interesting feature: 
  the output has the same form as the input. 
 
[To discover the importance of this property it is worthwhile to think about the use of other 
waveforms to express the output in terms of the input.  For example, a squarewave, a periodic 
ramp, a sawtooth (an optional lab exercise). ] 
 
(b) Use the result in (a) to obtain a formula for the ratio of output amplitude to input amplitude 
as a function of w for 1/RC = 1000 (rad/sec).  Sketch the result, and find the value of w for 
which the ratio is 3dB. 
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Question 5: solution using the Laplace Transform 
 
(a) Look up the definition Y(s) of the Laplace transform of the  
function y(t).  Show that the Laplace transform of (d/dt)y(t) is sY(s). 
Solve Eqn P4.1 as a function of s by applying the Laplace transform to both sides (note that no 
restriction is imposed on the form of the input) .    
 
Compare this result with the solution obtained with input  
 V_in (t) = A_in.exp(jwt) 
Comment on similarities and differences. 
 
(b) The transfer function is defined as V_out(s)/V_in(s).  Use the result in (a) to write down the 
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transfer function of the RC circuit.  
 
(c) Find the Laplace transform of y(t) = exp( - a.t).  Compare this with the transfer function in 
(b).   
 
(d) What is the relationship between the transfer function and the impulse response that is 
apparent from (c)? 
 
(e) On the basis of (d), what is the operation in the s domain that corresponds to convolution in 
the time domain?  Confirm your answer by looking up the convolution theorem.  
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Question 6:  synthesized model of RC circuit  
 
(a) Consider Eqn P4.1 in the Laplace domain, i.e., 
 
 s.V_out = a . V_in + (- a) . V_out 
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Use the block diagram in Task 25 as a guide to model this equation using an integrator (1/s).  
Note that s.V_out(s) appears at the integrator input. 
 
(b) In practical applications the use of a scaled integrator (k/s) may be necessary.  Adjust the 
system equation so that the LHS is (s/k).V_out, and modify the model accordingly.  
 
(c) Suppose k = 200 and a = 1000.  Determine the corresponding value of a1 in the block diagram 
in Task 25. 
 

 
Question 7 

How long will it take this RC NETWORK to rise to a level 37% below its final level ?  

It should take 1 time constant = 1 ms 
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Question 8 

Calculate  the expected real circuit step response of the RC NETWORK using the real circuit 
values and real circuit input values. These values are available in the User Manual. For your 
convenience they are R=10kohm, and C=100nF 

1 ms 

Measured response corresponds with theory. 
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Graph 1: step and impulse responses 

 
 
Question 9 

What is the width if the impulse. What is its maximum amplitude ?  

0.1 ms; 4.8V 
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Question 10 

What is the equation for the measured impulse response using actual circuit values ? How does 
this compare with theory ?  

See first part of answer for Q 11 

 

 
Question 11 

Explain why the impulse response reaches the peak value that it does.  
HINT: superposition of 2 step responses is involved. 

Finite impulse considered to be the sum of 2 step responses separated by 0.1ms. Hence the  

response to 1st step is 1 – e-t/RC ; for t>0. 

Response to 2nd step is –[1 – e-(t-0.0001)/RC ]; for t>0.0001; a time delayed response. 

Overall impulse response is the sum of these (with 2nd response = 0 until t=0.0001). 

 

The peak is value of 1st response at t=0.0001 ie: 1 - e-0.0001/0.001   = 0.0952 (normalized) 

Hence = 0.0952 x 4.8 = 0.457 denormalized. 

 

 
Question 12 

What is the equation for the output signal and how does it compare with the theoretical output 
expected from this network ? Refer to your work in preparation question 3. 

See prep.3 
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Graph 2: exponential pulse response 
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Question 13 

Show that RC = | 1/(k.a1)|; where |k.a1| = 1000 
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Graph 3: step and impulse response of synthesized system 

 
 
 
Question 14 

What values of a0 and a1 have you found give your synthesised system a  perfect match to the 
actual RC NETWORK ? 
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a0= + 0.84; a1 = - 0.07 

 

 
Question 15 

What is the signal at the input to the integrator ? Is this expected ? Explain: 

It is the differential of the output. 

Yes,  

 
Question 16 

Using the measured values above, what is the actual transfer function for your synthesised 
network which matches the actual RC network ? Show your working. 

k measured as 11927. 

 

 
Question 17 

Explain any discrepancies you find between expected theory and measurements. What sources 
of error are responsible for these ? 

 

 

 
 



 
                                        © 2011 Emona Instruments               Experiment 10 – Time domain analysis of an RC circuit V1.1 10-24 

 
Graph 4: frequency response and bode plot of synthesized system 
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Pre-requisite work 

Preparation will be required in order for the hands-on lab work to make sense. This guided 
preparation is a revision of theory you will have covered in lectures and is presented below as a 
number of computation exercises. This work should be completed before attempting the lab. 
 
Question 1 

For the system in Figure 1, obtain a differential equation relating the output x0(t) and the input 
u(t).  Show by substitution that x0 = e

jωt is a solution and determine the corresponding input u(t) 
that produces this output. 

 
 
If you are uncomfortable with a complex-valued function to represent the behaviour of a 

system that is supposed to operate with real-valued signals, x0 = cos(ωt) or sin(ωt) could be 
used.  However, you will quickly discover that the exponential function has a very useful 
property that simplifies the math considerably.  Remembering that cos(ωt) is Re{ ejωt}, you can 
carry out the analysis with ejωt then simply take the real part of the result.  Practitioners 
generally don't bother with the formality of taking the real part.  Moreover, complex valued 
signals are easily realized in digitally implemented systems, and indeed, frequently used, for 
example in modulators and demodulators of dial-up modems. 
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INPUT 

u 

x 1 x 2 x 
0 

-a 1 

-a 
0 

 
 
Figure 1: schematic of 2nd order integrator feedback structure without feedforward. 

 
Question 2 

From the above, with x0 = e
jωt, obtain an expression for the ratio x0/u as a function of jω (not 

just "ω"; the reason for this will emerge shortly).  Note that this ratio is complex valued.  Then, 
obtain its magnitude and phase shift as functions of ω (not jω). 
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Question 3 
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 From the results in Question 1 above, plot the magnitude |x0/u| versus ω (radians/sec) for the 
case a0 = 0.81, a1 = 0.64 .  Note that there is a progressive fall off as ω increases.  Hence, we 
can think of this system as realizing a lowpass filter.  
 
 

Question 4 

We now consider an alternative way of getting the response.  With a little algebra we create a 
graphical medium that will provide an intuitive environment for visualizing and generating both 
magnitude and phase responses. 

First, return to the expression for x0/u obtained in (a) and replace "jω" by the symbol "s". Look 
upon s merely as a convenient stand in for jω.  It is not necessary to ascribe any deeper 
significance to this substitution for the purposes of this lab.  The result is the (complex-valued) 
rational function 

   x0/u = H(s) =  1/(s
2 + a1.s + a0)      (Eqn 1). 

 

For the case a0 = 0.81, a1 = 0.64 (as in (b), express the denominator quadratic in the factored 

form (s - p1)(s - p2), where p1 and p2 are the roots. Show that these are given by 

 

   p1 = 0.9(cos(110.8°) + j.sin(110.8°)) = 0.9exp
j0.616π  

    p2 = 0.9(cos(110.8°) - j.sin(110.8°)) = 0.9exp
-j0.616π           (Eqn 2). 
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Question 5 
 

Express the complex points p1 and p2 from equation 2 above as the non-exponential complex 
form of a + ib, that is, with a real and imaginary part.  
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Question 6 

Next, we look at a graphical approach for evaluating the factors (s - p1) and (s - p2).  Place 

crosses  ("x") on a complex plane at the locations corresponding to p1 and p2, as obtained in (c) 
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above.  Place a dot at the point 1.2 on the j axis, i.e., the complex value jω = j1.2 .  Join this point 
and the crosses at p1 and p2 with straight lines.  Satisfy yourself that the lengths of these 

joining lines are |jω - p1| and |jω - p2|.  Noting that 1/|H(jω)| is the product of these two 
magnitudes, estimate |H(j1.2)|. 
 

 
Question 7 

 Use the idea above to obtain estimates of |H| at other frequencies and thus produce a sketch 
graph of |H| over the range 0 to 5  radian/s. (ie: ω will range from 0 to 5). Notice that the 
presence of a peak in the response is obvious from the behaviour of the vector from p1 as the 
dot on the j axis is moved near p1.  Note that this vector has much greater influence than the 
other vector, especially near the peak.  Compare this estimate with the computed result you 
obtained in (b). Plot at least 4 points over this range, choosing your points to reflect the 
important characteristics of this response. 
 
Explain why the vector from p1 has a greater influence on the peak of the response. 
 
Re Question 7:  
 
The procedure is the same as in Q6.  The main purpose of the exercise is to demonstrate how 
the general shape of the response can be estimated intuitively from the position of the poles in 
the the s plane.  A secondary aspect is to compare the outcome with the exact result in Q3.  
 
The reason why the pole in the lower half plane usually has less influence is because the rate of 
change of its contribution is relatively small as the position of the frequency point on the j axis 
moves closer to the upper half plane pole.  
 
Question 8 

The roots p1 and p2 of the denominator polynomial of H(s), marked as crosses on a plane of the 

complex variable s are known as poles of H(s).  Note that in the example case, p2 is the complex 

conjugate of p1.  Why is this so? 

 

Question 9 

Derive Eqn1 from the schematic (block) diagram, Figure 1, without using the differential 
equation step.  That is, treat the integrator as a "gain" of value 1/s and process the equations as 
algebra. 
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Question 10 

 Next we proceed to the system in Fig 2.  Note that this is a simple extension of the feedback 
only system in Fig. 1.  Use Eqn 1 to obtain the output/input equation y/u ,  
 

 y/u = H_y (s) = (b2.s
2 + b1.s + b0)/(s

2 + a1.s + a0)  Eqn3 

 

(i) Consider the case b0 = 2.0, b1 = 0, b2 = 1.0 .  Show that the roots of the numerator for these 

coefficients are z1 = 0 + j1.414,  z2 = 0 - j1.414 . Place an "o" on these points on the same s plane 

diagram you used to mark the poles, Graph 2. The roots of the numerator are known as "zeros". 
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Figure 2:  schematic of 2nd order integrator feedback structure with feedforward 

combiner. 
 
Question 11 

 Using the zeros with the method from Question 6, carry out the graphical estimation of the 
numerator of Eqn 3 at s = j1.2. Note that this is a special case, with the zeros located on the j 

axis (since b1 = 0).  Hence, the lines joining the point jw and the zeros will lie on the j axis. 

Combine the numerator and denominator estimates to obtain |H_y(j2)|.  Extend to other values 
of w, and sketch the magnitude response |H_y(jω)|.  Comment on the presence of a null at ω  = 
1.414. 
 

Question 12 

 (optional) Compute |H_y(jω)| from Eqn 3 and assess the quality of the estimate based on poles 
and zeros.  
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Question 13 

With a0 and a1 as in Question 3, apply the pole-zero method to obtain approximate graphs of the 

magnitude response for the following cases: 
 

 b1 = 1, b0 = b2 = 0 

 b2 = 1, b0 = b1 = 0 

 b2 = 1, b1 = −a1, b0 = a0 
 b2 = 1, b1 = 0, b0 = a0 
 
State the name of the response type corresponding to each case (e.g., bandstop, allpass, etc).  

For the allpass case, plot the phase and/or group delay response (group delay = − d(phase)/dω).  
Find out and note here an application for the allpass response. 
 
 
 b1 = 1, b0 = b2 = 0  => Bandpass (zero at s=0) 
 b2 = 1, b0 = b1 = 0  => Highpass (double zero at s=0) 

 b2 = 1, b1 = −a1, b0 = a0  => Allpass (mirror zeros in RHP)  
 b2 = 1, b1 = 0, b0 = a0  => Notch (zeros on j-axis opposite poles) 
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 b2 = 1, b1 = −a1, b0 = a0  => Allpass (mirror zeros in RHP)  
 
 

 
 

(group delay = − d(phase)/dω). 
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 b1 = 1, b0 = b2 = 0  => Bandpass (zero at s=0) 
 
 
 

 
 
 b2 = 1, b0 = b1 = 0  => Highpass (double zero at s=0) 
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 b2 = 1, b1 = 0, b0 = a0  => Notch (zeros on j-axis opposite poles) 
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Question 14 

The integrators in Figs 1 and 2 were depicted as having unity gain.  A practical realization 
normally has an associated gain constant.  The corresponding integrator equations have the form 
 

x0  = k . ∫(x1) dt 

x1  = k . ∫(x2) dt 
 
Note that k is not dimensionless.  Its unit is sec-1.  The SIGEx INTEGRATOR modules provide a 
choice of four values of k, selectable by means of on-board switches. The switches are labelled 
“INTEGRATION RATE” and the selection and associated value is displayed on the SIGEx SFP. 
Suppose k = 12,500 sec-1 is selected.  Modify the frequency scale for the response in (b) above 
to reflect this choice of k. Explain your reasoning here. 
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Question 15 

Measure and plot the gain frequency response at the output of the second integrator (x0) onto 
Graph 5. Confirm that this is a lowpass response similar to the theoretical predictions you 
obtained in prep item (Q3) (the rescaling of the frequency axis will be calculated next). Note 
the -3dB cut-off frequency and the frequency at which the response drops to -30dB. Measure 
the overshoot (if any) and note the frequency of the peak.  

DC gain=1.25; F-3db=2.67kHz; f-30db=3.75dB; fpk=1.6kHz @ +3dB 

 

 
 

Question 16 

Calculate the integration rate as (rise(V)/run(s)) / input voltage (V). The units for integration 
rate are sec-1. Repeat your measurement for a falling ramp and confirm that the magnitudes are 
equal. Compute rates for all 4 switch positions in case you need this information later on. 

@1kHz…..UP/UP: 6.3V/0.5ms/1 = 12600; UP/DOWN: 9.6V/0.5ms=19200 

DOWN/UP: 16V/0.5ms = 32000; DOWN/DOWN: 21/0.05ms=420,000 @ 10kHz 
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Graph 1: poles and magnitude response 
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Question 17 

Measure the frequency of the response peak, the 3dB frequencies, and hence, the 3dB 
bandwidth. 

Fpk=1.8kHz @ 1.5V 

f-3db=1.5x0.707=1.06V; f@1.06V=1.28khz & 2.74kHz…..BW=1.46kHz 

  
 
Question 18 

Calculate the geometric and arithmetic means of the 3dB frequencies.  Compare this with the 
peak frequency.  Consider which of these gives the closer agreement.  This is not easy to 
resolve as the peak is quite flat, and pinpointing it can be challenging. It turns out that for this 
type of second-order system the peak is at the geometric mean of the 3dB frequencies (see Tut 
Q.2).  Since these can be measured more accurately, this provides a better alternative for 
measuring the resonance frequency. From Tut Q.2 it is readily shown that this formula is not 
restricted to a 3dB bandwidth criterion.  You may like to put this to the test, e.g. for the 6dB 
frequencies. 

Arithmetic mean = (1.28k + 2.74k)/2 = 2.01kHz 

Geometric mean = sqrt(1.28k x 2.74k) = 1.87kHz 

 
 
Question 19 

In Tut Q.2 it is shown that the bandpass response peak is at (√a0) rad/sec.  Using this formula 
and measurement results obtain an alternative estimate of the scaling factor, and compare this 
with the results of the integrator gain measurements in T1.3.  Consider which of these is the 
more reliable . 
Record these results for use in Tut Q.2. 

Fpk=1.6k = 0.9/2pi x IG………..hence, IG = 11,170 

11,170/12600 = …12% difference…measurement errors ? 

 
  
Question 20 

Consider practical uses of these properties and record your comments. 

Convenient for tuneable digital filters 

For fine tuning responses 

 
 

mailto:f@1.06V=1.28khz
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Graph 2: locus of poles 
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Question 21 

Record your value of a1 here as you will need it later. 

a1 = -0.4, gives several cycles as per Fig 7, (other values are equally valid) 

 

 
 
Question 22 

Record your observations. 

As a1  tends to 0, decay rate reduces, and ringing continues for longer 

 

 
 
Question 23 

Record your findings. 

At a1 = +0.03, oscillations are self sustaining, without input. 

Fosc = 2.75 x 0.2ms = 1.81kHz @ +/- 1.4Vpk ie: gains are -0.81, +0.03, 1.0 
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Graph 3: pole locus with varying a1 coefficient 

 
Question 24 
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Return to the setup in Fig. 3 and with a0 back to the same position as in step 18, recorded in 
Q21, measure the resonance frequency at point x1 (the bandpass filter output).  Compare this 
result with the time domain frequency measurements of the impulse response oscillations. 

The frequencies are the same. The impulse reponse shows us the resonant frequency of the  

system. 
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Graph 8: response 
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Question 25 

Decrease b0 progressively and observe that this causes a reduction of the gain at low 
frequencies.  Continue until the gains at low and high frequencies are close to equal.   
You may wish to use the manual GAIN ADJUST knob on the SIGEx board to vary this 
parameter. Remember to setup its range to suit your parameter.   
Check that the null is still present. This realizes a bandstop filter, also known as a "notch" filter.  
Measure b0 (and a0 in case it was altered). Verify that b2 is still set to unity. 
 

Varying b0 causes gain reduction at low freq. 

Equality occurs at b0=0.8. fnull = 1.8khz 

 
Question 26 

Show that this response is obtained when b0 = a0 (with b2 = 1). This can be done quickly using Eqn 
3 in prep Question 9: at low frequency, substitute s = 0; at high frequency use 1/s = 0. 

Refer to Q9 

 

 
Question 27 

From prep Question 11 we expect the deepest notch when b1 is zero. Examine whether this is 
the case in your implementation. Vary b1 above and below zero and find the value that gives the 
deepest notch. Suggest why there may be a discrepancy between theory and practice. 

 Check the integrator gain by comparing theoretical and measured values of the null frequency.  
Consider possible practical causes for any discrepancies. 

b1=0 gives deepest notch 

Theory & practice very close 

 
Question 28 

Select a different integrator constant: suggested dip switch position DOWN UP  (i.e k around 
29,000/s) and measure the new null frequency.  

Fnull measured as 4.66kHz 

Calculated new fnull by scaling of integration rate = 1.8k x (32000/12600) = 4.57k 
  

Question 29 

Measure and plot the phase shift vs frequency and, again compare with your expectations from 
the pole-zero plot, on Graph 9. 
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Graph 4:allpass responses 
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Question 30 

Record the values of a0 and a1 that realize this outcome.  This response is known as maximally 
flat.  In Tut Q.8 you are invited to show that the formula for a maximally flat second order 
allpole is a1 = √(2.a0). 

a1=-1.3 looks satisfactory, though other similar values do as well. 

 

 
Question 31 

Record the values of a0 and a1 that realize this outcome.  This response is known as critically 
damped.  It is of interest in control systems as it realizes the most rapid risetime without 
overshoot.  This idea also finds application in the context of Gaussian filters.  Further 
exploration of critical damping is provided in Tut. Q.9. 

A1= -1.54 gives a well damped response 
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Experiment 12 – Sampling and Aliasing  

 
Pre-requisite work 
 
Question 1 

Look up or derive the trigonometric identity for the product of two sines expressed as a sum.  
Confirm that the frequencies in this sum are  (f1 + f2) and |f1 - f2|, where f1 and f2 are the 
input frequencies.  Confirm that the output components are of equal magnitudes.  

sin a. sin b = ½ ( cos(a-b) – cos(a+b) ) 

 

 
Question 2 

Look up or derive the Fourier series of a squarewave (with no DC component) of duty ratio other 
than 50% (25% and 1% say). Note the sinx/x shaped spectrum envelope.  Locate the frequency 
of the first null of the envelope for each case and note the relationship with the pulse width. 

 

Now consider the 50% duty ratio case.  Comment on the disappearance of the even harmonics. 

50%: f(t)= 4/π[ 1.sin(wt) + 1/3.sin(3wt) + 1/5.sin(5wt) +… ]for odd quarter-wave symmetry,A=1 

 

 
Question 3 

Derive the spectrum of the product of a sinewave and a 1% duty ratio  squarewave. You can do 
this easily by using superposition with the results in Question 1 and Question 2. For convenience, 
make the frequency of the squarewave around five times the sinewave frequency.  Plot the 
resulting spectrum. 

 

 

 

Question 4 

Repeat this for a few other sampling rates, from 2000Hz, down to 400Hz, say. Document your 
readings in Table 1 below. From these observations, what is the minimum sampling rate you 
consider adequate to allow recovery of the analog signal without too much distortion, on the 
basis of this sampling format (i.e. using the SAMPLE/HOLD function).   

Recovery is getting sensitive and difficult to achieve around 400 Hz 

Sample rate (Hz) TLPF setting 

(approx.position) 

Recovered 

amplitude (V) 

2000 9 o’clk 1.7V 

1000 8.30 o’clk 1.7V 
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800 8:15 o’clk 1.7V 

400 8 o’clk 1.7V 

 

 
Table 1: sample rate readings for recovery from S/H 

 
 
Question 5 

Repeat the procedures in step 15 for recovery using the TUNEABLE LPF using the sample train 
generated with the system in Fig 2, i.e. with narrow pulses. Document your readings in Table 1 
below. Compare the outcome with those obtained with the S/Hold method.  Do you expect one 
of these sample formats to be better for interpolation to analog form? Is this borne out by 
your results? 

S/H should be better, due to less transitions 

No. Isolating the fundamental is the only issue. 

 
 

Table 2: sample rate readings for sampled pulse train recovery 
 

 
Question 6 

Examine the step and impulse responses of the filter at the settings that give you the best 
outcomes. Measure risetime and related properties and compare with the sample interval. 1 Use 
the PULSE GENERATOR module set to 10Hz, and various DUTY CYCLES settings to achieve this 
easily. 

Risetime=5ms; ringing @ 100Hz 

Width of impulse = 10ms 

 
Question 7 

For the same settings as in step 17, carry out a quick examination of the frequency response of 
the filter.  Obtain and record the 3dB cut-off frequency, and the attenuation of the stop-band.  

DC=3.5, hence -3db = 2.47V 

                                                
1You may wish o refer back to your notes from “Experiment 3: Special signals”, where step and 
impulse responses were covered. 

Sample rate (Hz) TLPF setting 

(approx.position) 

Recovered 

amplitude (V) 

2000 9 o’clk 1V 

1000 8.30 o’clk 1V 

800 8:15 o’clk 1V 

400 8 o’clk 1V 
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f-3db=110Hz. Stopband attenuation @ 200Hz > -60dB 

 
 
 

 
Graph 1: alias waveforms 
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Question 8 

Explain why the sampled signal spectrum looks the way it does and specifically relate this to 
your understanding of pre-lab preparation item 1 & 2. 

By superposition and sums/differences, each sampling signal harmonic has upper & lower 

sidebands of the sampled signal. 

 
Question 9 

Note the frequency of the first  and second nulls in the spectrum and explain why they are at  
those frequencies. 

Fnull = n * 1/pulse width = n * 4kHz 

 

 
Question 10 

At what sampling rate does the lower sideband of the  first spectrum image become located at 
the same frequency as the input sinewave ? 

200 

 

 
Question 11 

You should be able to recover a clean sinewave. What is its frequency ? Where does it come 
from? 

50 Hz. It is a created “alias” or “image” component 

 

 
Question 12 

Why is it not possible to recover the analog input when the number of samples per cycle of the 
input sinewave is less than two? 

Less than 2 samples per cycle causes false frequency components to be created. 

 

 
Question 13 

What is the minimum sampling rate that allows a filter to be able to recover the original 
sinewave signal without any other unwanted components ? 

Slightly more than two times the signal frequency, due to filter not being a perfect “brickwall” 

as required by theory. 
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Experiment 13 – Getting started with analog-digital conversion  

 
Question 1 

Show that  n = log2(L): 

An ‘n’ bit frame represents 2n (= L) possible states, hence n = log2L 

 

 

Question 2 

Record the number of clock periods per frame. 

8 

 

 

Question 3 

Currently the analog input signal is zero volts (since INPUT is grounded).  Before checking with 

the scope, consider what the PCM encoded output might look like. Can you assume that it will be 

00000000?. What else might it be, bearing in mind that this PCM ENCODER outputs offset 
binary format. 

10000000 = 0V 

 

 

Question 4 

On CH1 display the signal at PCM DATA output.The display should be similar to that in Figure 3 

(possibly with fewer frames). Is it in agreement with your expectations? 

FS:00000001 

DATA: 01111110, out by 2 bits. Reason: PCM encoder is not calibrated to 0V 

 

Question 5 

Adjust VARIABLE DC to its maximum negative value.  Record the DC voltage and the pattern of 

the 8-bit binary number. 

-2.5V = 00000000 

 

 

Question 6 

Slowly increase the amplitude of the DC input signal until there is a sudden change to the PCM 

output signal format.  Record the format of the new digital word, and the input DC voltage at 

which the change occurred. Use the INCREMENT arrows on the digital value entry box for a 

steady stable increase in DC value. 

-2.44 = 00000001 
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Table 1: DC VOLTAGE input vs. PCM codewords 

 

 

 

DC VOLTAGE (V) 8 bit PCM codeword 

-2.5 00000000 

-2.44 00000001 

-1.54 00101111 

-0.58 01100000 

+0.16 10000110 

+0.89 10101011 

+1.75 11010111 

+2.49 11111101 

+2.5 11111110 
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Graph 1:DC to binary word plot 
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Question 7 

On the basis of your observations so far, provide answers to the following: 

 

* what is the sampling rate ? 

* what is the frame width ? 

* what is the width of a data bit ? 

* what is the width of a data word ? 

* how many quantizing levels are there ? 

* are the quantizing levels uniformly (linearly) spaced ? 

* what is the the minimum quantized level spacing ? How does this compare to theory ?  

Fs=10k/8 = 1.25ksamples/sec 

8 bit; Tbit = 1/10,000 sec; Tword = 1/10,000*8 sec; 256 levels; Yes 

Measured quantizing levels: 2.5-2.32 for 7 levels = 0.18V/7 = 0.24V/level 

Theory: 5V/256 = 0.02V/level 

 

 
 

Question 8 

The relationship between the sampled input voltage and the output codeword has been 

described above. Suggest some variations of this relationship that could be useful ? 

Compressing certain regions of the scale can be useful to increase/decrease resolution 

in those regions eg: companding. 

 

Question 9 

Adjust the scope to display this waveform.  Record its shape and frequency.  Check whether 

this conforms with the Nyquist criterion. Show your reasoning. 

100Hz sine, 2V pk. Min sampling rate = 200Hz 

Fsampling = 10k/8=1.25kHz >> 200Hz 

 

Question 10 

Momentarily, vary the clock rate from 10,000 to 20,000 Hz. How does this affect the “sampling 

distortion” viewable in the output signal ? 

The quantization reduces. 

 

 

Question 11 

View the input to the TUNEABLE LPF, ie the output of the PCM DECODER and compare with the 

INPUT sinusoid. What is the gain of the PCM DECODER itself. 
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Approx 6/8 

 

 

Question 12 

Can you explain the source of the delay between input and output signals ? Both with and 

without the TUNEABLE LPF ? 

PCM data frame transmission time, PCM data frame reception time, and analog filter delay. 

 

 

Question 13 

Momentarily, vary the clock rate from 10,000 to 20,000 Hz. How does this affect the required 

Fc needed to recover the signal without distortion ? 

Higher Fc is adequate for the 20k case, due to the sampling images being further apart. 
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Experiment 14 – Discrete-time structures: 

Preparation 

This preparation provides essential theory needed for the lab work to make sense. 

 
Question 1 

Consider the system in Figure 1, where nT are the discrete-time points, with T sec denoting 
the unit time delay, i.e. the time between samples.  Show that the difference equation relating 
the output y(nT) and the input u(nT) is 
 
 Y(nT) = b0.u[nT] +    b1.u[(n - 1)T] +  b2.u[(n - 2)T]    (Eqn 1). 
 
Show by substitution that ejnTω is a solution, i.e. show that when the input is ejnTω , y(nT) is 
ejnTω multiplied by a constant (complex-valued);     ω  is the frequency of the input in 
radians/sec.   
 

UNIT 
DELAY 

UNIT 
DELAY 

INPUT 

OUTPUT 
+ 

b 0 b 1 
b 2 

 

Figure 1: schematic of FIR filter with two unit delays  

   
In Lab 11 we used a complex exponential input to represent the behaviour of a system that is 
supposed to operate with real-valued signals.  You could consider using u[nT] = cos(nTω) or 
sin(nTω) instead.  However, the use of the exponential function simplifies the math 
considerably.  We have already seen that cos(ωt) is Re{exp(jωt)}, so, you can carry out the 
analysis with ejnTω , then simply take the real part of the result.  After a while, working with 
complex exponential functions to represent sinusoids becomes second nature and we don't even 
bother thinking about taking the real part.  Many practical systems implemented digitally 
actually operate with complex-valued signals, for example modulators and demodulators 
working with quadrature signals. 
 
From the above, with input u(nT) = ejnTω , show that  
 
 H = y/u =  b0 + b1. e

-jTω + b2. e
-j2Tω  (Eqn 2). 

 
Note that H is not a function of  n.  
 
Question 2 

Use this result to obtain a general expression for the magnitude of y/u as a function of ω.  You 
will need to first write down the real and imaginary parts.   
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Set T = 1 sec for the time being, and plot the result for the case b0 = 1, b1 = -1.3 ,  
b2 = 0.9025 over the range ω = 0 to 2.π rad/sec.  Label the frequency axis in Hz as well as 
rad/sec. You should find there is a significant dip in the response near 0.13Hz.  
 
Question 3 

As in Lab 7, we consider an alternative way of getting frequency responses.  We will create a 
graphical medium to provide an intuitive environment for visualizing and generating both 
magnitude and phase responses. 
 
First, return to the expression for y/u obtained in (a) and replace "exp(jTω)" by the symbol 
"z". Look upon z merely as a convenient macro for exp(jTω) .  At this point there is no need to 
ascribe any deeper significance to this substitution.  The result is the (complex-valued) 
polynomial 
 
 y/u = H(z) =  b0 + b1.z

-1  + b2.z
-2  = z-2 . [b0. z

2  +  b1.z + b2 ]   (Eqn 3). 
 
For the case b0 = 1, b1 = - 1.3 , b2 = 0.9025 (from (Q2)), express the quadratic in the brackets 
in the factored form (z - z1)(z - z2), where z1 and z2 are the roots. Show that these are given 
by 
     

z1 = 0.95e 
j0.260π 

       z2 = 0.95e 
-j0.260π        (Eqn 4). 

 

Satisfy yourself that the magnitude response of H can be expressed as 
  

|H(ω)| = |(ejT ω - z1)|.|(e
jT ω - z2)|    (Eqn 5). 

Write down the corresponding expression for the phase of H. 
 
Question 4: Graphical plotting of poles & zeros 

 
We are now ready to proceed with a graphical approach for evaluating the factors (z - z1) and 
(z - z2) in Eqn 3.  Place an "o" on a complex plane (we will refer to this as the z plane) at the 
locations corresponding to z1 and z2, as obtained in Eqn 4. With T = 1, we will get an estimate 
of |H| at ω = π/5. 
 
Place a dot at the point ejπ/6. Join this point and the point z1 with a straight line. The length of 
this line is |(ejπ/5- z1)|.   
Do the same with z2 to obtain |(e

jπ/5 - z2)|.  From Eqn 5, the desired estimate of |H(π/5)| is 
simply the product of the lengths of these two lines.  
 
Question 5 

By repeating this for other values of ω we are able to get a quick estimate of the graph of |H| 
versus ω.  It's important to note that the locus of ejTω is a circle of unity radius centered at 
the origin (known as the unit circle).  Hence, the general shape of the frequency response is 
easily estimated by simply running a point counter-clockwise along the circumference of the 
unit circle, starting at (1, 0).  Note that the idea is just a variant on the procedure introduced 
in Lab 11, where we moved the frequency point along the j axis. Compare the outcome with the 
result computed in (Q2). 
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Notice that the presence of the trough in the response can be seen at a glance from the 
behaviour of the vector from the "zero" z1 as the dot on the unit circle is moved near z1. By 
comparison, the rate of change of the other vector is small over that range.  
 
Question 6 

Modify Fig 1 by replacing the unit delays with a gain of 1/z and show that Eqn 3 follows by 
inspection using simple algebra, without the need to work through the difference equation 
step. While this is only a minor simplification in this example, it is very useful in more 
complicated cases, especially where feedback loops are involved. 
 
Although z was originally introduced in (Q3) as just a substitution for ejTω, our interpretation 
appears to have been extended in (Q4) to include any complex number. Consider whether this 
is the case, and why. 
 
Question 7 

In the above example, we had the sample interval T = 1.  Suppose T = 125 microsec. Adjust the 
frequency axis for this value of T.  Extend this result for any value of T.  How are the zeros of 
H(z) affected by the value of T? Why is it appropriate to use T = 1 normally? 
 
Show that |H(ω)|  is periodic, and determine the period in Hz. 
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Graph 1:response plot 

 
Question 8 

Measure the notch frequency and the depth relative to the response at DC.  Also measure the 
time delay as a function of frequency at several points of interest.     
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Fn = 1.26kHz, attenuation = 0.15/1.1 

 

 
Question 9 

Determine and note the new notch frequency, for the b1 gain entered. Document the 
relationship between b1 and notch frequency 

 

 

  
Question 10 

What is the level of attenuation of the f2 signal for the original zero positions. 

F1: 2V in, 0.2V out pk 

 F2: 2V in, 1V out pk … using FFT display 

  
Question 11 

From your previous findings in this experiment, what change is required to gain b1 to reduce 
the notch frequency ? 

As b1 is reduced toward – 2, fnotch reduces 

  

 
Question 12 

What is the equation relating theta of the zero to the frequency of the zero, as implemented 
in the PZ PLOT TAB ?     

Zero frequency = zero theta(deg)/360 x clock frequency. 

 

 
Question 13 

For what value of b1 did you achieve the maximum attenuation of the lower message component  
RELATIVE to the higher component ? What levels did you measure ? 

B1=-1.81 

F1=0.1V; f2=1V 

 

Question 14 

What components is the TUNEABLE LPF attenuationg in order to give a “clean” signal ?     

It is predominantly eliminating the image harmonics around 10kHz, the sampling clock rate. 

It is these harmonics which create the sampled/stepped nature of the discrete output 
signal. 
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Experiment 15 – Poles and zeros in the z plane: IIR systems 
 
Question 1 

Consider the feedback system in Figure 1. 
   
Show that the difference equation relating the adder output x0(nT) and the input u(nT) is 
 
 x0(nT) = u[nT]  -   a1.x0[(n - 1)T] -  a2.x0[(n - 2)T]      (Eqn 1), 
where nT are the discrete time points, T sec denoting the unit delay, i.e. the time between samples. 
 
Show by substitution that ejnTw is a solution, i.e. show that when x0(nT) is of the form ejnTw, the input 
u(nT) is ejnTw,  multiplied by a constant (complex-valued);     w  is the frequency of the input in 
radians/sec; (the use of complex exponentials for the representation of sinusoidal signals is 
discussed in Lab 8, 10 and 13. 
 
From the above, with input u(nT) = ejnTw obtain  
 
 x0/u = 1/[ 1 + a1. e

-jTw + a2. e
-j2Tw]      (Eqn 2). 

 
Note that x0/u is not a function of the time index n.  
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Question 2 

Use this result to obtain a general expression for |x0/u| as a function of w.  
  
Tip: to simplify the math, operate on u/x0 instead of x0/u, expressing the result in polar notation. 
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Set T = 1 sec for the time being, and plot the result for the case  a1 = -1.6 , a2 = 0.902 over the range 
w = 0 to π rad/sec.  Label the frequency axis in Hz and in rad/sec. You should find there is a peak in 
the response near 0.09Hz. 
 
 

 



 
Experiment 15 – Poles and Zeros in the z plane   © 2011 Emona Instruments 15-5 

 
 
F(w) = 1/sqrt[(1+acos(w)+bcos(2w))^2 + (asin(w)+bsin(2w))^2)] for a=-1.6, b=0.9025 
 

 
F(w)=abs[1/bexp(i2w)+aexp(iw) + 1] for a=-1.6, b=0.9025 
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Question 3 
 Replace "exp(jTw)" by the symbol "z" in Eqn 2.  The result is  
  
 H_x0(z) = x0/u = 1/(1 + a1.z

-1  + a2.z
-2 ) = z2 / ( z2  +  a1.z + a2 )    (Eqn 3). 

 
The quadratic ( z2 + a1.z + a2 ) can be expressed in the factored form (z - p1)(z - p2).   
Using the values of a1 and a2 given in Question 2 above, find the roots p1 and p2 (express the result in 
polar notation).  Mark the position of p1 and p2 on the complex z plane with an "x" to indicate that 
they represent poles. The distance between these points and the unit circle is of key importance.   
 
This is a parallel process to that in Lab 11 where we plotted zeros.  A similar procedure was carried 
out in Lab 11 for a CT transfer function in the complex variable s. 
 
Write down a formula for p1 in terms of a1 and a2.  Note that p1 may be real or complex depending on 
a1 and a2.  Determine the conditions for p1 to be complex valued.  For this case, express p1 in polar 
notation.  Take note of the fact that |p1| does not depend on a1 (this will be useful later). Obtain p2 
from p1. 
 

Question 4 

Satisfy yourself that the magnitude response of H_x0 is given by 
 
 |H_x0(w)| = 1/[|(e

jTw - p1)|.|(exp
jTw - p2)|]   (Eqn 4). 

 
This provides the key for the graphical method described in Lab 13 to obtain an estimate of the 
magnitude response.  Again, we will use T = 1 .   
 
Plot the magnitude of the denominator for selected values of w over the range 0 to π. The quantity  
|(ejTw - p1)| becomes quite small and changes rapidly as the point on the unit circle is moved near p1.  
Plot additional points there as needed.  Invert to get |H_x0(w)| and compare this with the result you 
obtained in (b). 
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Q4: F(w) = abs[exp(iw) – 0.95exp( +/- i0.56962] 
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Question 5 

Modify Fig 1 by replacing the unit delays with a gain of 1/z  and show that Eqn 3 follows by inspection 
using simple algebra.  
 
Question 6 

Apply this idea to show that the transfer function for the system in Fig. 3 is 
 
  H_y (z) = y/u = (b0 + b1.z

-1  + b2.z
-2 ) /(1 + a1.z

-1  + a2.z
-2 )    (Eqn5) 

 
Question 7 

Use the graphical pole-zero method (covered in Experiment 14) to obtain estimates of the magnitude 
responses for the following cases (0 to Nyquist freq):  
 
 (i) b0 =b2 = 1, b1 = 2,  a1 and a2 as in Question 2. 
 (ii) b0 = b2 = 1, b1 = - 2, a1 and a2 as in Question 2 
 (iii)  b0 = 1, b1 = 0, b2 = - 1, a1 and a2 as in Question 2 

 

Which of these is lowpass, highpass, bandpass? 
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In descending order at origin: f(w)=abs[exp(i2w)+2exp(iw)+1/bexp(i2w)+aexp(iw)+1] for 
(a,b)= (-1.6,0.81); (-1.1,0.55); (-1, 0.5) 

 

 

In descending order at origin: f(w)=abs[exp(i2w)+2exp(iw)+1/bexp(i2w)+aexp(iw)+1] for 
(a,b)= (-1,0.45); (-1,0.5); (-1.1, 0.64) 
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BPF: f(w)=abs[exp(i2w) + 0.exp(iw)-1/bexp(i2w)+aexp(iw)+1] for a= -1.6, b=0.7 
 

 

 

HPF: f(w)=abs[exp(i2w) -2.exp(iw)+1/bexp(i2w)+aexp(iw)+1] for a= -1.6, b=0.7 
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Question 8 

Consider a DT system with sampling rate 20kHz.  Obtain estimates of the poles and zeros that 
realize a lowpass filter with cut-off near 3kHz.  Obtain a highpass filter using the same poles. 
 

 
Question 9 
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For the same sampling rate as in Question 8 obtain estimates of the poles and zeros that realize a 
bandpass filter centered near 3.1kHz, with 3dB bandwidth 500Hz. HINT: review Question 7  

 

 

BPF: f(w)=abs[exp(i2w) – 1 / bexp(i2w) + aexp(iw) + 1] for a= -1, b=0.81 
 
Question 10 
Calculate the poles corresponding to these values.  Measure and plot the magnitude response at the 
output of the feedback adder.  Note and record the resonance frequency and the bandwidth. Use 
the poles to graphically predict these parameters;  compare with your measurements. 

Poles @ 0.8+/-0.5i; hence peak @ 1812Hz. Distance from pole to unit circle = 1-0.95 = 0.05 

Estimated Gain at peak = 1/(0.05 x 1.6) = 12; Gain at DC=1/0.54 x 0.54 = 3.45 

 
Question 11 
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Decrease |a1| by a small amount ( around 5-10%, say) and measure the effect on the resonance 
frequency and bandwidth.  Use this to estimate the migration of the poles. Does this agree with your 
expectations? 

A1=1.4, Fpk=2.3kHz, and BW is constant 

 

 
Question 12 

Repeat step 3 for a 5% decrease of a2. Compare the effects of varying a1 and a2.  Which of these 
controls would you use to tune the resonance frequency?  Use the formulas you obtained in the 
preparation to explain this. 

A1 tunes resonantfrequency 

A2 controls gain, but affects resonant freq also. 

 

Question 13 

With a1 unchanged, gradually increase a2 and observe the narrowing of the resonance.  Continue until 
you see indications of unstable behaviour.  At that point, remove the input signal and observe the 
output (if needed, increase a2 a little more).  Is it sinusoidal?  Measure and record its frequency.  
Measure a2.  Calculate and plot the pole positions.  Note especially whether they are inside or outside 
the unit circle.  

At a2=1.022, the system breaks into self sustaining oscillations, at 10V peak and 2.1kHz. 

Using PZPLOT, we find poles at 0.8 +/- 0.62i, with r=1.011 (outside unit circle !) 

Frequency of poles according to pole position is 2.094kHz…as measured. 

 

 

 
Question 14 

Begin with a2 around -0.9. Describe the effect on the response as the magnitude of a2 reduces.  
Measure the frequency of the oscillatory tail of the response and compare with your observations in 
step 5. 

As magnitude of a2 reduces, amplitude of ringing reduces. 

Fosc = 1.8kHz, for a2=-0.902 

 
Question 15 

In the model of step 14, adjust a2 to reduce the peaking to a minimum. As well you will need to 
reduce the amplitude of the input signal to 0.5Vpp to reduce saturation. Confirm this for yourself. 
Plot the resulting response and measure the new value of a2. Calculate and plot the new poles. Obtain 
an estimate of the theoretical magnitude response with these poles and compare this with the 
measured curve.  Why was a2 used for this rather than a1? 
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Question 16 

Change the polarity of b1 in the lowpass of step 19 and show that this produces a highpass.  Compare 
with your findings in Question 7. 
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Question 17 

Repeat for case (iii) in Question 7, that is: b0 = 1, b1 = 0; b2 = -1 ; a0 = 1; a1 =-1.6; a2 =0.902;  Confirm 
this is a bandpass filter.  Tune a1 and a2 to obtain a peak at 3.1 kHz and 3dB bandwidth 500Hz.  
Measure the resulting a1 and a2 and plot the new poles.  Compare this with your findings in Question 
7.  

For ADDER gain settings: 1,0,-1/1,1.1,-0.9, we measure: F-3db at 2.82khz & 3.26kHz, giving 
approx 400Hz 

3dB BW. Other settings will also be suitable. 

 
Question 18 

Implement the following case: a0 = 1, a1 = 0,  a2 = 0.8, b0 = 0.8, b1 = 0, b2 = 1. Note that b0=a2 and b1=a1.  
Measure the magnitude response.  Confirm it is allpass.  Locate the positions of the poles and zeros. 
Plot them below for your records. 

Zeros: 0 +/- 1.12i; poles : 0+/- 0.89i 

Allpass. 

 
Question 19 

Change a1 and b1 to - 1.6 and confirm the response is still allpass. Examine the behaviour of the phase 
response.  Look for the frequency of most rapid phase variation, and confirm this occurs near a pole. 
Plot the poles and zeros below for your records. 

Zeros: 1 +/- 0.5i; poles: 0.8 +/- 0.4i 

Allpass. Pole & zero frequency = 1476 Hz 

 
Question 20 

Show your calculation of the where you expect the peak frequency to be using the pole position and 
sampling frequency. 

Poles at 0.8 +/- 0.51. tan θ = 0.51/0.8, hence θ = 32.5 deg., hence f pole = 1806 Hz 

Note: this is only a very close estimate, as peak may not align perfectly with pole angle. 

 
Question 21 

Confirm this relationship from values displayed on PZ PLOT and show your working here: 

A1 = +1.4 & poles @ 0.7 +/- 0.64i 

A1 = -2σ = -2 x 0.7 = -1.4 We have setup the ADDER gain as +1.4 (negated) 

 
Question 22 

Varying a2 will vary the gain or peak level of the filter. Notice what happens in the time domain when 
a2 = -1.0. The filter breaks into oscillation. View the poles again using PZ PLOT while varying a2. 
(Theory states that a2 = r

2). 

For a2 = -1, r=1, giving oscill. @ 2050 Hz 
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Question 23 

Confirm that the SIGEx hardware performs as designed by theory in terms of notch positions etc. 
You will have to use the zero positions mostly in these cases. Why ? 

Notches are implemented by placement of zeros on or near the unit circle. 

 

 

 

 
Question 24 

Try varying design values and take note of the ORDER of the filter designed. NOTE that the SIGEx 
experiment we have implemented can only support a 2nd order structure. Note your observations. 

4 diff HPF filter designs are available on the DFD TAB. 

NB: the input noise spectrum serves as a convenient 

multi-frequency signal for viewing the filter responses quickly and easily ie: for  

qualitative analysis, rather than quantitative measurements. 
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Experiment 16 – Discrete-time filters – practical applications 
 

Achievements in this experiment   
 

Pre-requisite work 
 

Question 1 

Using the method in Lab15 Question 5, show that the transfer function for the system in Fig.1 
is 
  H_y (z-1) = y/u = (b0 + b1.z

-1 + b2.z
-2 ) /(1 + a1.z

-1  + a2.z
-2 )    (Eqn1). 

 

y 
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x 0 
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Fig 1: block diagram of 2nd-order Transposed Direct-Form2 feedback structure 
 
 
Question 2 

Consider a filter with a1 = -1.84 , a2 = 0.90 , b0 = 1 , b2 = b0 , b1 = -1.7. Calculate and plot the 
zeros of the transfer functions in (Q1). 
 
Question 3 

From the results in (Q1) and (Q2) obtain the ratios x1/y and x2/y expressed as transfer 
functions in z. Use these to calculate |y/x2| and |y/x1| at the peak of the response of the 
filter in (Q2). 
 
Question 4 

Consider the implementation of the filter in (Q2) using the Direct Form 2 structure in Lab 15 
Fig 2. Satisfy yourself using only a quick inspection of the diagram, that with this structure 
the magnitude responses at the internal nodes are identical.  Repeat (Q3) for this case, and 
compare the outcomes.  This comparison will be applied in the Lab, hence it's important to have 
the analysis ready to use. 
 
Question 5 

Consider a transfer function with the coefficients in Question 2 and sampling rate 
10ksamples/sec.   
 
(a) Sketch the gain response versus frequency and note the peak and null frequencies. Repeat 
this with sampling rate 20ksamples/sec.  Note that the general shape of the response is 
virtually unchanged, but the frequency axis has been rescaled. 
 
(b) The outcome in (a) is useful in some applications, however suppose we want to use the 
faster sampling rate without frequency axis rescaling.  This will require relocating the poles 
and zeros so that their distance from the zero frequency point on the unit circle (1,0) is 
suitably reduced - by a factor of about 2, in this case. The pole should slide on a line joining 
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(1,0) and its original position.  The zero should remain on the unit circle.   Use a computer to 
plot and compare the new and original responses.  Suggest possible adjustments to the poles 
and zeros to reduce any differences. 
 
 Question 6 

Look up a suitable reference to confirm that the the bilinear transformations are as follows (T 
is the sampling interval): 
 
 s = (2/T) .(z - 1)/(z + 1) 
 
 z = (1 + (T/2)s )/(1 - (T/2)s ) 
 
These formulas are used to convert continuous time (CT) transfer functions to discrete time 
(DT), and vice versa.  In this exercise we obtain the CT transfer function for the case in 
Question 2, and reverse the process with a new value of T to produce the DT transfer function 
for a higher sampling rate. 
 
(a) Find or write a program for implementing the bilinear transformations.   
 
(b) Use this to obtain the transfer function and the poles and zeros corresponding to the 
increased sampling rate in Question 5. Confirm that the zeros have remained on the unit circle 
(optional extra: prove theoretically that z plane unit circle zeros always transform to the j 
axis in the s plane, and vice versa). 
 
(c) Obtain a plot of the gain frequency response with the new sampling rate and compare this 
with the original and with the approximate case in Question xxx (b). 
 
(d) Compare the positions of the poles and zeros generated with the bilinear transformations 
versus the approximate case in Question xxx (b). 
 
Question 7 

This question is about the effect of errors in coefficient values that may be encountered as a 
result of limited arithmetic word length. The errors proposed here are of the order that could 
occur with a 12-bit wordlength. 
 
(a) Consider the transfer function obtained in Q.6(c).  Change the value of a2 by 0.1 percent.  
Plot the gain frequency response and compare with the original response.   
 
(b) Repeat (a) for coefficient a1, and then for both coefficients together 
 
(c) Examine the shift in the pole and zero positions for the coefficient errors in (a)  
and (b).  Are these consistent with the gain response errors? 
 
(d) Plot the locus of the movement of a pole as a1 and a2 are varied, respectively.  Point to 
aspects of these loci in the region near the point (1,0) that exacerbate the sensitivity issues 
relating to coefficient quantization.    
 
(e) Is there any significant advantage with floating point arithmetic compared with fixed point 
for the effects of coefficient quantization? 
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Graph 1: Magnitude responses 

 
Table 1: Signal magnitudes for Direct form and Transposed Direct form IIR 
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Question 8 

What is the maximum level of internal gain you have measured in this filter ? 

X30 

 

 
Question 9 

Why is it essential to keep the input signal at a low level ie: 400 mv pp ? 

So as not to saturate internal gain stages, especially internal ADDER junction 

 

 
Question 10 

Keeping in mind that the SIGEx circuits maximum signal range is +/- 12V and the maximum gain 
of ADDER gain stages is +/- 2, what is the maximum level of observable signal you must keep 
within ? 

+/- 6V 

 

 
Table 2: Implementation table for mapping coefficients 

 Direct Form 2 

(for u = 400mv) 

Transposed Direct  

Form 2 

( for u = 400mv) 

Transposed Direct  

Form 2 

( for u = 1.6V) 

Peak (Hz) 412 400 355 

u (Vpp) 0.4 0.4 1.6 

y (Vpp) 2.6 2.2 11.5 

y/u gain 2.6/0.4 = 6 2.2/0.4 = 6 11.5/1.6 = 7 

x1 (Vpp) 12 2.7 11.5 

x2 (Vpp) 12 2.4 9.5 

Upper 
3dB freq. 

500 461 433 

Lower 
3dB freq. 

300 111 216 

BW 3dB 200 350 220 
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Question 11 

What is the difference in internal gain between the non-transposed and transposed structures 
(in dB) ? 

Non-transpose: 12/0.4=30 

Transpose: 2.5/0.4 = 6…hence gain difference = 30/6=5 = 14dB 

 
 
Question 12 

Document the transfer function and the poles and zeros for this original filter. 

Z: 0.85 +/- 0.53i 

P: 0.92 +/- 0.23i 

 
Question 13 

What do you expect will happen to the pole and zero positions for a sampling rate of 20,000 
samples/sec ? 

Nothing. Sampling rate does not influence pole & zero positions 

 

 
Question 14 

What do you expect this filter response to be like with a sampling clock rate of 20,000 
samples/sec ? 

Peak & null should occur at approx twice the previous freq. 

 

 

Theoretical value as 

per block diagram 

Implementation label 

as per patching 

diagram 

Implementation value 

 F 1 (fixed) 

b0=1 G 1 (fixed) 

b1=-1.7 B2 -1.7 

b2=1 A2 -1 

a1=-1.84 B0 1.84 

a2=0.9 A0 -0.9 

 A1 0 

 B1 1 
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Question 15 

What are the -3dB points and bandwidth for this filter at 20,000 samples/sec ? 

Fpk = 800Hz. F-3dB = 518 & 975 Hz, BW = 460 

 

 
Question 16 

Approximately how close to the origin will the  poles and zeros need to be moved to ? 

Halfway 

 

 
Question 17 

What was the best result you were able to achieve in this manner ? 

Various results are acceptable. More an exercise to show limits of trial & error. 

 

 
Question 18 

What are the new poles and zeros using the bilateral transformation approach ? 
What is the new transfer function for this transformed filter ? 
NB: This was covered in the pre-lab preparatory questions. 

Coefficients: 1;-1.92;1/1;-1.932;+0.95 

Z: 0.96 +/- 0.28i, theta=16.2 deg. Poles: 0.97 +/- 0.13i, r=0.975 
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Graph 2: Response of new filter at 20kHz 

 

 

Question 19 

What can you say about this new filter in terms of its sensitivity. What are positive and 
negatives of running this filter design at 20ksamples/sec ? 
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(-): Higher Q needed, less stable as poles close to unit circle, coefft resolution issues arise. 

(+): Easier to filter out output images. 

 
Question 20 

Can you suggest a range of angles, in which the poles and zeros would be optimally placed in 
order to avoid the challenges discovered above ? This may require experimentation or 
further reading. 

Optimum region is θ = 15 – 90 degrees 
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